scholarly journals The Solution of Difference Equations by Continued Fractions

1915 ◽  
Vol 34 ◽  
pp. 61-75
Author(s):  
J. A. Strang

The theorems which furnish in C.F. form the roots of a quadratic equation, and the similar process which leads to particular integrals of an ordinary differential equation of the second order, may be applied to certain types of difference equation. The types which suggest themselves for examination arethe bilinear equation, anda special form of the linear equation; the coefficients are functions of r, and s is constant.

1937 ◽  
Vol 30 ◽  
pp. vi-x
Author(s):  
C. G. Darwin

1. If the approximate numerical value of e is expressed as a continued fraction the result isand it was in finding the proof that the sequence extends correctly to infinity that the following work was done. First the continued fraction may be simplified by setting down the difference equations for numerator and denominator as usual, and eliminating two out of every successive three equations. A difference equation is thus formed between the first, fourth, seventh, tenth … convergents , and this equation will generate another continued fraction. After a little rearrangement of the first two members it appears that (1) implies2. We therefore consider the continued fractionwhich includes (2), and also certain continued fractions which were discussed by Prof. Turnbull. He evaluated them without solving the difference equations, and it is the purpose here to show how the difference equations may be solved completely both in his cases and in the different problem of (2). It will appear that the work is connected with certain types of hypergeometric function, but I shall not go into this deeply.


2008 ◽  
Vol 144 (4) ◽  
pp. 867-919 ◽  
Author(s):  
Andrea Pulita

AbstractWe develop the theory of p-adic confluence of q-difference equations. The main result is the fact that, in the p-adic framework, a function is a (Taylor) solution of a differential equation if and only if it is a solution of a q-difference equation. This fact implies an equivalence, called confluence, between the category of differential equations and those of q-difference equations. We develop this theory by introducing a category of sheaves on the disk D−(1,1), for which the stalk at 1 is a differential equation, the stalk at q isa q-difference equation if q is not a root of unity, and the stalk at a root of unity ξ is a mixed object, formed by a differential equation and an action of σξ.


Author(s):  
J. R. Philip

AbstractWe study the equationHere s is not necessarily integral; m is initially unrestricted. Material-conserving instantaneous source solutions of A are reviewed as an entrée to material-losing solutions. Simple physical arguments show that solutions for a finite slug losing material at infinity at a finite nonzero rate can exist only for the following m-ranges: 0 < s < 2, −2s−1 < m ≤ −1; s > 2, −1 < m < −2s−1. The result for s = 1 was known previously. The case s = 2, m = −1, needs further investigation. Three different similarity schemes all lead to the same ordinary differential equation. For 0 < s < 2, parameter γ (0 < γ < ∞) in that equation discriminates between the three classes of solution: class 1 gives the concentration scale decreasing as a negative power of (1 + t/T); 2 gives exponential decrease; and 3 gives decrease as a positive power of (1 − t/T), the solution vanishing at t = T < ∞. Solutions for s = 1, are presented graphically. The variation of concentration and flux profiles with increasing γ is physically explicable in terms of increasing flux at infinity. An indefinitely large number of exact solutions are found for s = 1,γ = 1. These demonstrate the systematic variation of solution properties as m decreases from −1 toward −2 at fixed γ.


1975 ◽  
Vol 27 (3) ◽  
pp. 508-512
Author(s):  
G. B. Gustafson ◽  
S. Sedziwy

Consider the wth order scalar ordinary differential equationwith pr ∈ C([0, ∞) → R ) . The purpose of this paper is to establish the following:DECOMPOSITION THEOREM. The solution space X of (1.1) has a direct sum Decompositionwhere M1 and M2 are subspaces of X such that(1) each solution in M1\﹛0﹜ is nonzero for sufficiently large t ﹛nono sdilatory) ;(2) each solution in M2 has infinitely many zeros ﹛oscillatory).


1962 ◽  
Vol 2 (4) ◽  
pp. 425-439 ◽  
Author(s):  
A. Erdéyi

In this paper we shall discuss the boundary value problem consisting of the nonlinear ordinary differential equation of the second order, and the boundary conditions.


1920 ◽  
Vol 39 ◽  
pp. 58-62 ◽  
Author(s):  
Bevan B. Baker

1. The Pincherle polynomials are defined as the coefficients in the expansion of {1 − 3 tx + t3}−½ in ascending powers of t. If the coefficient of tn be denoted by Pn(x), then the polynomials satisfy the difference equationand Pn(x) satisfies the differential equation


Author(s):  
Nelson Onuchic ◽  
Plácido Z. Táboas

SynopsisThe perturbed linear ordinary differential equationis considered. Adopting the same approach of Massera and Schäffer [6], Corduneanu states in [2] the existence of a set of solutions of (1) contained in a given Banach space. In this paper we investigate some topological aspects of the set and analyze some of the implications from a point of view ofstability theory.


1939 ◽  
Vol 35 (4) ◽  
pp. 548-561 ◽  
Author(s):  
G. T. Bennett

1. It is here expedient to ignore the continued fractions from which they are usually derived and to define the simple continuants determined by the parameters a1, a2, a3, …, an, … as given by the chain of difference equationstogether with the initial values u0 = 0, u1 = 1: and these data lead successively to the functionsand


Author(s):  
H. A. Heilbronn

A function f(x1, x2) of two real variables x1, x2 which are restricted to rational integers will be called discrete harmonic (d.h.) if it satisfies the difference equationThis equation can be considered as the direct analogue either of the differential equationor of the integral equationin the notation normally employed to harmonic functions.


Sign in / Sign up

Export Citation Format

Share Document