The convergence of Euler products over p-adic number fields

2009 ◽  
Vol 52 (3) ◽  
pp. 583-606 ◽  
Author(s):  
Daniel Delbourgo

AbstractWe define a topological space over the p-adic numbers, in which Euler products and Dirichlet series converge. We then show how the classical Riemann zeta function has a (p-adic) Euler product structure at the negative integers. Finally, as a corollary of these results, we derive a new formula for the non-Archimedean Euler–Mascheroni constant.

2018 ◽  
Vol Volume 40 ◽  
Author(s):  
William D. Banks

International audience We give a new proof that the Riemann zeta function is nonzero in the half-plane {s ∈ C : σ > 1}. A novel feature of this proof is that it makes no use of the Euler product for ζ(s).


2005 ◽  
Vol 01 (03) ◽  
pp. 401-429
Author(s):  
MASATOSHI SUZUKI

As automorphic L-functions or Artin L-functions, several classes of L-functions have Euler products and functional equations. In this paper we study the zeros of L-functions which have Euler products and functional equations. We show that there exists a relation between the zeros of the Riemann zeta-function and the zeros of such L-functions. As a special case of our results, we find relations between the zeros of the Riemann zeta-function and the zeros of automorphic L-functions attached to elliptic modular forms or the zeros of Rankin–Selberg L-functions attached to two elliptic modular forms.


2018 ◽  
Vol 14 (02) ◽  
pp. 371-382
Author(s):  
K. Paolina Koutsaki ◽  
Albert Tamazyan ◽  
Alexandru Zaharescu

The relevant number to the Dirichlet series [Formula: see text], is defined to be the unique integer [Formula: see text] with [Formula: see text], which maximizes the quantity [Formula: see text]. In this paper, we classify the set of all relevant numbers to the Dirichlet [Formula: see text]-functions. The zeros of linear combinations of [Formula: see text] and its derivatives are also studied. We give an asymptotic formula for the supremum of the real parts of zeros of such combinations. We also compute the degree of the largest derivative needed for such a combination to vanish at a certain point.


1999 ◽  
Vol Volume 22 ◽  
Author(s):  
R Balasubramanian ◽  
K Ramachandra ◽  
A Sankaranarayanan ◽  
K Srinivas

International audience For a good Dirichlet series $F(s)$ (see Definition in \S1) which is a quotient of some products of the translates of the Riemann zeta-function, we prove that there are infinitely many poles $p_1+ip_2$ in $\Im (s)>C$ for every fixed $C>0$. Also, we study the gaps between the ordinates of the consecutive poles of $F(s)$.


1967 ◽  
Vol 15 (4) ◽  
pp. 309-313 ◽  
Author(s):  
Bruce C. Berndt

The generalised zeta-function ζ(s, α) is defined bywhere α>0 and Res>l. Clearly, ζ(s, 1)=, where ζ(s) denotes the Riemann zeta-function. In this paper we consider a general class of Dirichlet series satisfying a functional equation similar to that of ζ(s). If ø(s) is such a series, we analogously define ø(s, α). We shall derive a representation for ø(s, α) which will be valid in the entire complex s-plane. From this representation we determine some simple properties of ø(s, α).


Author(s):  
Ben Brubaker ◽  
Daniel Bump ◽  
Solomon Friedberg

Weyl group multiple Dirichlet series are generalizations of the Riemann zeta function. Like the Riemann zeta function, they are Dirichlet series with analytic continuation and functional equations, having applications to analytic number theory. By contrast, these Weyl group multiple Dirichlet series may be functions of several complex variables and their groups of functional equations may be arbitrary finite Weyl groups. Furthermore, their coefficients are multiplicative up to roots of unity, generalizing the notion of Euler products. This book proves foundational results about these series and develops their combinatorics. These interesting functions may be described as Whittaker coefficients of Eisenstein series on metaplectic groups, but this characterization doesn't readily lead to an explicit description of the coefficients. The coefficients may be expressed as sums over Kashiwara's crystals, which are combinatorial analogs of characters of irreducible representations of Lie groups. For Cartan Type A, there are two distinguished descriptions, and if these are known to be equal, the analytic properties of the Dirichlet series follow. Proving the equality of the two combinatorial definitions of the Weyl group multiple Dirichlet series requires the comparison of two sums of products of Gauss sums over lattice points in polytopes. Through a series of surprising combinatorial reductions, this is accomplished. The book includes expository material about crystals, deformations of the Weyl character formula, and the Yang–Baxter equation.


Mathematics ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1073
Author(s):  
Antanas Laurinčikas ◽  
Darius Šiaučiūnas

In the paper, a Dirichlet series ζuN(s) whose shifts ζuN(s+ikh), k=0,1,⋯, h>0, approximate analytic non-vanishing functions defined on the right-hand side of the critical strip is considered. This series is closely connected to the Riemann zeta-function. The sequence uN→∞ and uN≪N2 as N→∞.


Sign in / Sign up

Export Citation Format

Share Document