scholarly journals Non-vanishing of Dirichlet series without Euler products

2018 ◽  
Vol Volume 40 ◽  
Author(s):  
William D. Banks

International audience We give a new proof that the Riemann zeta function is nonzero in the half-plane {s ∈ C : σ > 1}. A novel feature of this proof is that it makes no use of the Euler product for ζ(s).

1999 ◽  
Vol Volume 22 ◽  
Author(s):  
R Balasubramanian ◽  
K Ramachandra ◽  
A Sankaranarayanan ◽  
K Srinivas

International audience For a good Dirichlet series $F(s)$ (see Definition in \S1) which is a quotient of some products of the translates of the Riemann zeta-function, we prove that there are infinitely many poles $p_1+ip_2$ in $\Im (s)>C$ for every fixed $C>0$. Also, we study the gaps between the ordinates of the consecutive poles of $F(s)$.


1989 ◽  
Vol Volume 12 ◽  
Author(s):  
R Balasubramanian ◽  
K Ramachandra

International audience Continuing our earlier work on the same topic published in the same journal last year we prove the following result in this paper: If $f(z)$ is analytic in the closed disc $\vert z\vert\leq r$ where $\vert f(z)\vert\leq M$ holds, and $A\geq1$, then $\vert f(0)\vert\leq(24A\log M) (\frac{1}{2r}\int_{-r}^r \vert f(iy)\vert\,dy)+M^{-A}.$ Proof uses an averaging technique involving the use of the exponential function and has many applications to Dirichlet series and the Riemann zeta function.


1978 ◽  
Vol Volume 1 ◽  
Author(s):  
K Ramachandra

International audience The present paper is concerned with $\Omega$-estimates of the quantity $$(1/H)\int_{T}^{T+H}\vert(d^m/ds^m)\zeta^k(\frac{1}{2}+it)\vert dt$$ where $k$ is a positive number (not necessarily an integer), $m$ a nonnegative integer, and $(\log T)^{\delta}\leq H \leq T$, where $\delta$ is a small positive constant. The main theorems are stated for Dirichlet series satisfying certain conditions and the corollaries concerning the zeta function illustrate quite well the scope and interest of the results. %It is proved that if $2k\geq1$ and $T\geq T_0(\delta)$, then $$(1/H)\int_{T}^{T+H}\vert \zeta(\frac{1}{2}+it)\vert^{2k}dt > (\log H)^{k^2}(\log\log H)^{-C}$$ and $$(1/H)\int_{T}^{T+H} \vert\zeta'(\frac{1}{2}+it)\vert dt > (\log H)^{5/4}(\log\log H)^{-C},$$ where $C$ is a constant depending only on $\delta$.


2009 ◽  
Vol 52 (3) ◽  
pp. 583-606 ◽  
Author(s):  
Daniel Delbourgo

AbstractWe define a topological space over the p-adic numbers, in which Euler products and Dirichlet series converge. We then show how the classical Riemann zeta function has a (p-adic) Euler product structure at the negative integers. Finally, as a corollary of these results, we derive a new formula for the non-Archimedean Euler–Mascheroni constant.


2009 ◽  
Vol Volume 32 ◽  
Author(s):  
Khristo Boyadzhiev ◽  
H. Gopalkrishna Gadiyar ◽  
R Padma

International audience We study three special Dirichlet series, two of them alternating, related to the Riemann zeta-function. These series are shown to have extensions to the entire complex plane and we find their values at the negative integers (or residues at poles). These values are given in terms of Bernoulli and Euler numbers.


2005 ◽  
Vol 01 (03) ◽  
pp. 401-429
Author(s):  
MASATOSHI SUZUKI

As automorphic L-functions or Artin L-functions, several classes of L-functions have Euler products and functional equations. In this paper we study the zeros of L-functions which have Euler products and functional equations. We show that there exists a relation between the zeros of the Riemann zeta-function and the zeros of such L-functions. As a special case of our results, we find relations between the zeros of the Riemann zeta-function and the zeros of automorphic L-functions attached to elliptic modular forms or the zeros of Rankin–Selberg L-functions attached to two elliptic modular forms.


1999 ◽  
Vol Volume 22 ◽  
Author(s):  
R Balasubramanian ◽  
K Ramachandra ◽  
A Sankaranarayanan

International audience For ``good Dirichlet series'' $F(s)$ we prove that there are infinitely many poles $p_1+ip_2$ in $\Im (s)>C$ for every fixed $C>0$. Also we study the gaps between the numbers $p_2$ arranged in the non-decreasing order.


2018 ◽  
Vol 14 (02) ◽  
pp. 371-382
Author(s):  
K. Paolina Koutsaki ◽  
Albert Tamazyan ◽  
Alexandru Zaharescu

The relevant number to the Dirichlet series [Formula: see text], is defined to be the unique integer [Formula: see text] with [Formula: see text], which maximizes the quantity [Formula: see text]. In this paper, we classify the set of all relevant numbers to the Dirichlet [Formula: see text]-functions. The zeros of linear combinations of [Formula: see text] and its derivatives are also studied. We give an asymptotic formula for the supremum of the real parts of zeros of such combinations. We also compute the degree of the largest derivative needed for such a combination to vanish at a certain point.


Sign in / Sign up

Export Citation Format

Share Document