Nitrogen Nutrition of Cowpea (Vigna unguiculata)

1977 ◽  
Vol 13 (3) ◽  
pp. 241-252 ◽  
Author(s):  
P. J. Dart ◽  
P. A. Huxley ◽  
A. R. J. Eaglesham ◽  
F. R. Minchin ◽  
R. J. Summerfield ◽  
...  

SUMMARYAverage seed yields of effectively nodulated cowpea plants were 38% greater than those of non-nodulated plants when both received applied nitrogen at concentrations ranging from 60 to 240 ppm during one of three periods: emergence to first flower, first flower to mid pod-fill, or mid pod-fill to maturity. Nodulation increased seed yields by 45% when plants received a ‘basal’ level of 30 ppm N throughout growth. None of the combined nitrogen treatments could compensate non-nodulated plants for the loss of symbiotic nitrogen fixation. Non-nodulated plants relying on applied N branched less, produced fewer peduncles and set fewer pods on each peduncle than nodulated plants.

1977 ◽  
Vol 13 (2) ◽  
pp. 129-142 ◽  
Author(s):  
R. J. Summerfield ◽  
P. J. Dart ◽  
P. A. Huxley ◽  
A. R. J. Eaglesham ◽  
F. R. Minchin ◽  
...  

SUMMARYEffectively nodulated cowpea plants, grown in pots without applied nitrogen, were vegetatively equal to non-nodulated plants supplied with 60 ppm N throughout growth (88 days) and produced significantly greater seed yields. Supplying non-nodulated plants with 120 or 240 ppm N improved seed yields (but not significantly) compared with plants completely dependent on symbiotic fixation. Nodulation promoted branching, and improved pod set and/or retention compared with plants relying on applied N.


2002 ◽  
Vol 53 (4) ◽  
pp. 453
Author(s):  
B. Singh ◽  
K. Usha

Intercropping with legumes and non-legumes is commonly practised in many parts of the world to maximise productivity per unit area of land. In India, blackgram or urd [Vigna mungo (L.) Hepper] is a popular pulse legume component of intercropping farming systems. Often, however, potential production is compromised, particularly in high fertiliser input systems, because blackgram competes with the non-legume component of the system for nitrogen in the soil. In order to identify lines of blackgram that could obtain the majority of their nitrogen requirements from symbiotic fixation of atmospheric nitrogen rather than from uptake of soil nitrogen, 50 genotypes were screened for tolerance to (applied) nitrogen in soil. The parameters used to appraise tolerance were extent of root nodulation, the amount of nitrogen fixed, nitrate reductase activity in roots and nodules, and nitrite content of roots and nodules. There were 2 nitrogen treatments applied as urea, viz. 40 (N40) and 120 (N120) kg N per ha. There were 3 genotypes whose nitrogen-fixing effectiveness was apparently unimpaired by applications of nitrogen to the soil. Genotype NC-59308 nodulated and fixed atmospheric nitrogen satisfactorily at both the lower and higher levels of applied nitrogen. At N40, genotypes EC-48215 and PLU-726 formed a great abundance of large nodules effective in nitrogen fixation; even at N120, both lines had better symbioses than the majority of the 50 blackgram lines originally screened. These 3 genotypes are deemed worthy of further examination for their suitability for intercropping systems. How this might be done is discussed.


1963 ◽  
Vol 14 (1) ◽  
pp. 39 ◽  
Author(s):  
PG Ozanne ◽  
EAN Greenwood ◽  
TC Shaw

Yield increases of 30% were obtained on two subterranean clover pastures in response to dressings of 2 and 10 oz CoSO4.7H2O per acre. A dressing of salts containing chromium, nickel, vanadium, tungsten, aluminium, and iodine had no effect. Applications of cobalt increased the nitrogen content of the clover in all cases. No response to cobalt was obtained in the presence of adequate applied nitrogen. Clover growth was sharply reduced when cobalt contents fell below 0.04 p.p.m. The unfertilized soils on which the experiments were located contained only 0.022 and 0.019 p.p.m. cobalt in the 0–4 in. layer. Applied cobalt was not leached downward but remained in the surface 4 in. However, less than 0.5% of the applied cobalt was taken up by the pasture. To obtain a response to applied cobalt it appears necessary for legumes to be growing in soil containing Rhizobia capable of symbiotic nitrogen fixation; but the soil must also be very low in available cobalt and nitrogen.


2019 ◽  
Vol 20 (10) ◽  
pp. 2471 ◽  
Author(s):  
Jie Ji ◽  
Chunyang Zhang ◽  
Zhongfeng Sun ◽  
Longlong Wang ◽  
Deqiang Duanmu ◽  
...  

Cowpea (Vigna unguiculata) is widely cultivated across the world. Due to its symbiotic nitrogen fixation capability and many agronomically important traits, such as tolerance to low rainfall and low fertilization requirements, as well as its high nutrition and health benefits, cowpea is an important legume crop, especially in many semi-arid countries. However, research in Vigna unguiculata is dramatically hampered by the lack of mutant resources and efficient tools for gene inactivation in vivo. In this study, we used clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated protein 9 (Cas9). We applied the CRISPR/Cas9-mediated genome editing technology to efficiently disrupt the representative symbiotic nitrogen fixation (SNF) gene in Vigna unguiculata. Our customized guide RNAs (gRNAs) targeting symbiosis receptor-like kinase (SYMRK) achieved ~67% mutagenic efficiency in hairy-root-transformed plants, and nodule formation was completely blocked in the mutants with both alleles disrupted. Various types of mutations were observed near the PAM region of the respective gRNA. These results demonstrate the applicability of the CRISPR/Cas9 system in Vigna unguiculata, and therefore should significantly stimulate functional genomics analyses of many important agronomical traits in this unique crop legume.


1996 ◽  
Vol 23 (4) ◽  
pp. 413 ◽  
Author(s):  
KC Woo ◽  
S Xu

The effects of metabolic activators and inhibitors on phosphoenolpyruvate carboxylase (PEPC) activity were examined at pH 7 in partially purified enzyme from nodules of soybean (Glycine max (L.) Merr.), Psophocarpus tetragonolobus DC. and Vigna unguiculata ssp. sesquipedalis (L.) Verdc. Glucose 6-phosphate, fructose 6-phosphate, glucose 1-phosphate, fructose 1-phosphate, fructose 1,6- bisphosphate and phosphoglycerate stimulated the activity about 2-fold at low (0.5 mM) but not saturating (2.5 mM) PEP concentration. Glc 6-P and fru 6-P were the most effective activators and they increased the affinity of the enzyme for PEP by 2-4-fold. The dicarboxylates, malate, succinate, malonate, 2-oxoglutarate and aspartate inhibited PEPC activity. Malate was the most inhibitory, and strongly inhibited PEPC activity even at saturating PEP concentration. The Ki values for malate were 0.3-0.4 mM for soybean and P. tetragonolobus. However, glc 6-P and fru 6-P alleviated maiate inhibition and increased the Ki values by 11- to 28-fold in these two species. We propose that glc 6-P (fru 6-P) activates PEPC in a feedforward regulation and protects it against feedback inhibition by malate and thus coordinates the supply of photosynthate availability with malate synthesis required by the bacteroids to support symbiotic nitrogen fixation in nodules.


1987 ◽  
Vol 99 (2-3) ◽  
pp. 435-439 ◽  
Author(s):  
L. Senanayake ◽  
D. P. Knievel ◽  
S. E. Stevens

1985 ◽  
Vol 25 (3) ◽  
pp. 588 ◽  
Author(s):  
MDA Bolland

The response of serradella and subterranean clover to soil applications of cobalt in the absence and presence of regular applications of nitrogen fertilizer was measured in a field experiment on a nitrogen-deficient soil near Esperance, Western Australia. In an ancillary experiment, also sited near Esperance on a nitrogen-deficient soil, the responses of three serradella species and two cultivars of subterranean clover to regular applications of nitrogen were measured. Yields of herbage and seed were used to measure the response to the fertilizer treatments. Neither serradella, nor subterranean clover responded to cobalt application. However, in winter, herbage yields of serradella were markedly improved by regular applications of fertilizer nitrogen. Yield increases were three- to eight-fold, depending on the species. However, by springtime, there was no herbage response of serradella to fertilizer nitrogen. Seed yields of serradella and yields of subterranean clover at any harvest were unaffected by regular applications of nitrogen. It is concluded that low winter temperatures limit the rate of symbiotic nitrogen fixation for serradella which in turn limits dry matter production.


Sign in / Sign up

Export Citation Format

Share Document