metabolite regulation
Recently Published Documents


TOTAL DOCUMENTS

43
(FIVE YEARS 6)

H-INDEX

17
(FIVE YEARS 1)

Fermentation ◽  
2022 ◽  
Vol 8 (1) ◽  
pp. 33
Author(s):  
Yanfeng Liu ◽  
Bing Wan ◽  
Fan Yang ◽  
Xiaolong Zhang ◽  
Jianghua Li ◽  
...  

Saccharomyces cerevisiae and Lactobacillus panis are ethanol and lactic acid producers in Maotai-flavor Baijiu fermentation. Understanding their interaction is important to regulate the microbiome composition during fermentation and biosynthesis of ethanol and lactic acid. This study is the first to analyze the interaction between S. cerevisiae and L. panis at different growth phases during co-cultivation. Results showed that the different growth phases of S. cerevisiae modulated L. panis growth. Metabolomics analysis showed that amino acids and nucleoside secreted by S. cerevisiae promote L. panis growth, while ethanol inhibited L. panis growth. Furthermore, S. cerevisiae modulated L. panis cell growth under varying sugar concentrations. Simulated solid-state fermentation demonstrated that regulating the sugar concentration or the ratio of S. cerevisiae to L. panis could inhibit L. panis cell growth and reduce lactic acid accumulation. This study provided an understanding on Maotai-flavor Baijiu microbiome, which might be useful for metabolite regulation.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Changi Wong ◽  
Yee Soon Ling ◽  
Julia Lih Suan Wee ◽  
Aazani Mujahid ◽  
Moritz Müller

AbstractNepenthes, as the largest family of carnivorous plants, is found with an extensive geographical distribution throughout the Malay Archipelago, specifically in Borneo, Philippines, and Sumatra. Highland species are able to tolerate cold stress and lowland species heat stress. Our current understanding on the adaptation or survival mechanisms acquired by the different Nepenthes species to their climatic conditions at the phytochemical level is, however, limited. In this study, we applied an eco-metabolomics approach to identify temperature stressed individual metabolic fingerprints of four Nepenthes species: the lowlanders N. ampullaria, N. rafflesiana and N. northiana, and the highlander N. minima. We hypothesized that distinct metabolite regulation patterns exist between the Nepenthes species due to their adaptation towards different geographical and altitudinal distribution. Our results revealed not only distinct temperature stress induced metabolite fingerprints for each Nepenthes species, but also shared metabolic response and adaptation strategies. The interspecific responses and adaptation of N. rafflesiana and N. northiana likely reflected their natural habitat niches. Moreover, our study also indicates the potential of lowlanders, especially N. ampullaria and N. rafflesiana, to produce metabolites needed to deal with increased temperatures, offering hope for the plant genus and future adaption in times of changing climate.


2020 ◽  
Vol 219 (8) ◽  
Author(s):  
Kyle Begovich ◽  
Anthony Q. Vu ◽  
Gene Yeo ◽  
James E. Wilhelm

Stress granules (SGs) are evolutionarily conserved condensates of ribonucleoproteins that assemble in response to metabolic stresses. Because aberrant SG formation is associated with amyotrophic lateral sclerosis (ALS), understanding the connection between metabolic activity and SG composition can provide therapeutic insights into neurodegeneration. Here, we identify 17 metabolic enzymes recruited to yeast SGs in response to physiological growth stress. Furthermore, the product of one of these enzymes, AdoMet, is a regulator of SG assembly and composition. Decreases in AdoMet levels increase SG formation, while chronic elevation of AdoMet produces SG remnants lacking proteins associated with the 5′ end of transcripts. Interestingly, acute elevation of AdoMet blocks SG formation in yeast and motor neurons. Treatment of ALS-derived motor neurons with AdoMet also suppresses the formation of TDP-43–positive SGs, a hallmark of ALS. Together, these results argue that AdoMet is an evolutionarily conserved regulator of SG composition and assembly with therapeutic potential in neurodegeneration.


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Daniel Veyel ◽  
Sylwia Kierszniowska ◽  
Monika Kosmacz ◽  
Ewelina Maria Sokolowska ◽  
Aenne Michaelis ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document