A reappraisal of the conditions of deposition of the Maentwrog Beds (Upper Cambrian) at Porth Ceiriad, North Wales

1983 ◽  
Vol 120 (1) ◽  
pp. 73-80 ◽  
Author(s):  
P. K. Bose

SummaryThe marine Maentwrog Beds comprise a repetition of sand and mud facies and follow a non-sequence. A shallow water depositional environment is inferred from the nature of the basal unit (with stromatolites and intraformational conglomerate), and hummocky cross-stratification and mud-draped erosion surfaces. The bulk of the formation was deposited between fair weather and storm wave base, the sand facies representing storm depositional events.

2012 ◽  
Vol 150 (3) ◽  
pp. 519-535 ◽  
Author(s):  
JACK E. TREAGUS ◽  
SUSAN H. TREAGUS ◽  
NIGEL H. WOODCOCK

AbstractThe boundary between the Rhoscolyn and New Harbour formations on Holy Island, Anglesey, has been described as a high strain zone or as a thrust. The boundary is here described at four localities, with reference to the contrasting sedimentary and deformational character of the two formations. At one of these localities, Borth Wen, sandstones and conglomerates at the top of the Rhoscolyn Formation are followed, without any break, by tuffs and then mudstones of the New Harbour Formation. It is concluded that there is clear evidence of depositional continuity across the boundary here, and that both formations subsequently shared a common two-phase deformation. The first (D1) was manifestly different in intensity and scale in the two formations, whereas the second (D2) produced very similar structures in both. The other three localities provide continuity of sedimentary and tectonic features at this boundary in a traverse along the length of Holy Island, leading us to identify two previously unrecognized major D1 folds in addition to the Rhoscolyn Anticline. At one of these localities (Holyhead), we confirm the presence of Skolithos just below the boundary, supporting radiometric evidence for a lower Cambrian or later age for the Rhoscolyn Formation. A turbidite interpretation for both the Rhoscolyn and New Harbour formations best fits the available evidence. A deep-water depositional environment is still compatible with the sporadic presence of Skolithos burrows, but less so with reported observations of hummocky and swaley cross-stratification lower down the South Stack Group.


2018 ◽  
Vol 34 (2) ◽  
pp. 699
Author(s):  
Μ. ΚΑΤΗ

The facies analysis of the Eocene limestones in the Aghioi Pantes section in central Zakynthos, part of the Preapulian carbonate sequence in the greater area, showed three megafacies types: a) graded beds, in which two main subtypes have been recognized, medium- to thin-bedded calcarenites-calcilutites and thick-bedded ruditic calcarenites, consisting mainly of redeposited shallow-water carbonate sands (mostly bioclasts of nummulites and echinoids); based on their sedimentary structures they have been interpreted as low density turbidite and high density turbidite (or sandy debris flows) deposits correspondingly, b) calcareous conglomerates consisting of shallow-water facies lithoclasts and abundant pelagic intraclasts all of which have been interpreted as debris flow deposits and c) folded strata of pelagic-hemipelagic composition that have been interpreted as slumps. Subsequently, the studied limestones constitute exclusively deep-water resedimented facies having been deposited mainly through sediment gravity flows, carrying significant amounts of shallow-water bio- lithoclastic material. The distribution and the organization of this facies association, with the dominance in particular of the base cut-out turbidites, suggest as depositional environment of the studied Eocene limestones a "low" in the outer slope connecting the Preapulian platform with the adjacent Ionian basin.


1987 ◽  
Vol 35 ◽  
pp. 191-202
Author(s):  
M. J. Melchin

Ashgill age graptolites have been collected from seven sections of the Cape Phillips Formation across most of its outcrop belt. The earliest graptolite zone recognisable is that of Orthograptus fastigatus. It is correla­ted with the Dicellograptus ornatus · Zone of the northern Canadian Cordilllera and the Dicellograptus complexus Subzone of the Dicel/ograptus anceps Zone of Great Britain although no dicellograptids have been found at any of the present sections. The overlying zone is that of Paraorthograptus pacificus, an ea­sily recognisable zone around much of the world. Graptolites of the C/imacograptus extraordinarius and Glyptograptus persculptus zones appear to be en­tirely absent from this formation. This is attributed to the Late Ordovician glaciation which has induced regression and submarine erosion in many areas worldwide. The earliest recognisable Silurian zone varies from section to section due to buried or barren intervals and/or hiatuses of varying length. The Parakidograptus acuminatus Zone has been recognised at only one section. At the others, the Atavograptus atavus, the Lagarograptus acinaces-Coronograptus gregarius, the Monograptus convolutus or the Monograptus spiralis Zone (s.1.) are the earliest recognisable Silurian fau­nas. Relatively low fauna! diversities in the Ashgill and lowest Llandovery portion of the section and the to­tal lack of dicellograptids are interpreted to be due to relatively shallow water, outer shelf or carbonate ramp depositional environment.


Nature ◽  
1966 ◽  
Vol 210 (5042) ◽  
pp. 1246-1247 ◽  
Author(s):  
T. P. CRIMES
Keyword(s):  

GFF ◽  
1999 ◽  
Vol 121 (4) ◽  
pp. 301-306 ◽  
Author(s):  
Johan Eklöf ◽  
Jens Rydell ◽  
Jemima Fröjmark ◽  
Maria Johansson ◽  
Adolf Seilacher

2007 ◽  
Vol 7 (1) ◽  
pp. 47-68 ◽  
Author(s):  
T. P. Crimes ◽  
Jane Herdman

2021 ◽  
Author(s):  
Piotr Szrek ◽  
Patrycja G. Dworczak ◽  
Olga Wilk

Among the hundreds of collected Devonian vertebrate macrofossils in the Holy Cross Mountains, placoderms dominate and provide data on their morphology, distribution and taphonomy. So far 17 out of more than 500 studied specimens have revealed bones with surfaces covered by sediment-filled trace fossils. The traces have been made on the vertebrate remains before their final burial. The borings, oval in cross-section, include dendroidal networks of shallow tunnels or short, straight or curved individual scratches and grooves, which frequently create groups on the both sides of the bones. ?Karethraichnus isp. from Kowala and ?Osteocallis isp. from Wietrznia are the oldest record of these ichnogenera. Sedimentological clues indicate a shallow water environment, probably from the slope below the storm wave base.


2019 ◽  
Vol 89 (9) ◽  
pp. 833-848
Author(s):  
Kai Zhou ◽  
Brian R. Pratt

ABSTRACT Two well-preserved mud mounds, approximately 50 m thick, in the Mount Hawk Formation (Upper Devonian, Frasnian) in western Alberta provide an unparalleled opportunity to study the microstructure of this reef type in detail for this time interval. This reveals that they are composed dominantly of peloidal sediments—more than a quarter of mud mound volume—along with dense micrite, particulate micrite, bioclasts, and stromatactis cavities. Five types of peloids are differentiated: bacterial, cyanobacterial, bioclastic, intraclastic, and pseudo-peloids. Bacterial peloids were generated by bacterial metabolic activities with possibly some contribution from organomineralization in areas within spicular networks. Three subtypes of cyanobacterial peloids are distinguished based on whether they are physically reworked calcified filaments, aggregates of calcified coccoids, or precipitated within stromatolite-forming cyanobacterial mats or biofilms. Bioclastic peloids are fully micritized fragments of skeletons and shells. Intraclastic peloids are eroded fragments of early-lithified matrix. Pseudo-peloids represent artifacts of poorly preserved sponge spicular networks reflecting the interplay between dissolution of spicules and organomineralization. The distribution of the various peloid types shows specificity in different microfacies. They prove to be valuable paleoecological indicators, and taken together suggest that the mud mounds accreted within the photic zone above storm wave base but below the fair-weather wave base, during deposition of a transgressive and perhaps highstand systems tracts. They are the products reflecting a dynamic balance between constructional versus destructive processes. Bacterial peloids combined with dense micrite constitute the framework, which in turn makes up close to 40% of the mud mounds. This indicates that microbial activities are responsible for the early-indurated framework. The onset of bacterial peloid formation in the bedded sediment immediately underlying the mud mounds further demonstrates that it may have been a necessary precursor to mud-mound initiation. Bacterial peloids appear to characterize most Paleozoic and Mesozoic reefal mud mounds as an essential framework element.


1992 ◽  
Vol 6 ◽  
pp. 219-219 ◽  
Author(s):  
Guy M. Narbonne ◽  
Robert W. Dalrymple

Although most occurrences of Ediacaran fossils are from shallow-shelf deposits, taxonomically-similar assemblages have recently been described from a 2.5 km-thick succession of dark mudstones and turbiditic sandstones in the Windermere Supergroup of the Mackenzie Mountains, northwestern Canada. The paleogeographic position (20-40 km seaward of the shelf edge), abundant evidence of mass flow, and the complete absence of in situ shallow-water features imply that deposition took place on a slope considerably below storm wave-base. Ediacaran fossils were not observed in axial trough deposits (lower parts of the Twitya and Sheepbed formations), but megafossils occur sporadically in lower to middle slope deposits higher in the same formations. Megafossils and trace fossils are present in upper slope settings (Blueflower Formation) at the top of the Ediacaran succession. The megafossil assemblage varies stratigraphically, but in all formations is dominated by discoid forms (e.g. Cyclomedusa, Ediacaria, Nimbia); frondose forms and vendomiids are very rare.Megafossils are preserved mainly as positive features on the soles of thin turbidite beds. Most fossiliferous beds begin with the rippled layer of the turbidite (Tc), but a few begin with the graded (Ta) or parallel-laminated (Tb) layer. Consistent orientation and high relief of individuals, evidence of mutual deformation during growth of adjacent organisms, and other taphonomic features imply that virtually all of the taxa represent benthic polypoid and frond-like organisms (not jellyfish). Slump structures occur commonly in the sandstone fill of fossils, suggesting that many of the organisms were buried alive by the turbidite and later decomposed. Other individuals, even on the same bedding plane, exhibit graded to laminated fill identical to that of the overlying turbidite bed, indicating that the depressions on the sea bottom produced by these individuals were empty at the time of turbidite deposition. Escape structures are absent, suggesting that the Ediacaran organisms were not capable of burrowing up through even thin layers of sand.Ediacaran megafossils are invariably preserved on black, wrinkled surfaces similar to those elsewhere interpreted as microbial mats. Molding of delicate features (including tentacles), preservation of open molds as negative epireliefs, and sedimentological evidence of considerable cohesion of these surfaces relative to the underlying turbiditic muds (Td,e) supports this interpretation, and suggests that microbial mats were as important in the preservation of these deep-water Ediacara faunas as they were in their shallow-water equivalents. The presence of the wrinkled mats and their associated Ediacaran fossils almost exclusively in the pyritic intervals of the succession suggests that both may have lived under exaerobic conditions in this deep-water setting.


Sign in / Sign up

Export Citation Format

Share Document