Cenozoic volcanism in the Middle East: petrogenesis of alkali basalts from northern Lebanon

2004 ◽  
Vol 141 (5) ◽  
pp. 545-563 ◽  
Author(s):  
ABDEL-FATTAH M. ABDEL-RAHMAN ◽  
PHILIP E. NASSAR

The Cenozoic volcanic field of the Akkar region in northern Lebanon consists of a thick succession (200 m) of basaltic lava flows, erupted at the junction between a restraining bend (the Yammouneh transform fault) and its northern extension (the Ghab transform) in Syria. Both faults are part of the Dead Sea transform fault system, which represents the boundary between the Arabian and African plates and the Levantine subplate. The lavas are made up of about 15–25 vol. % olivine (Fo79–84), 30–40 % clinopyroxene (salite), 40–50 % plagioclase (An58–67), and opaque Fe–Ti oxides (∼ 5 %). Geochemically, they exhibit a narrow range of SiO2 (44.6 to 47.0 wt %), and MgO (2.9 to 7.5 wt %), are relatively enriched in TiO2 (2.0 to 2.9 wt %), and are classified as alkali basalts. Mg-numbers range from 0.32 to 0.59, with an average of 0.47. The rocks are enriched in incompatible trace elements such as Zr (98–184 ppm), Nb (16–39 ppm) and Y (25–34 ppm). The REE patterns are fractionated ((La/Yb)N=8.2), and are generally parallel to subparallel. Such compositions are typical of those of HIMU-OIB and plume-related magmas. Elemental ratios such as K/P (2.9), La/Ta (21.8), La/Nb (0.80), Nb/Y (0.92) and Th/Nb (0.35), and the low average SiO2 content (46.1 wt %) suggest that the magma was subjected to minimal crustal contamination. This may be related to a rapid ascent of the parental magma, in agreement with the nature (mafic, oceanic crust-like) and the thickness (only about 12 km) of the crust of the Eastern Mediterranean region. Cenozoic volcanism in this region is interpreted to have occurred in association with an episode of localized extension, particularly at the junction between the Yammouneh restraining bend and the Dead Sea–Ghab Transform (that is, in a transtensional tectonic regime). The 143Nd/144Nd isotopic composition of the basaltic rocks of northern Lebanon ranges from 0.512842 to 0.512934 (εNd=4.0 to 5.8), and 87Sr/86Sr from 0.703317 to 0.703579, suggesting a HIMU-like mantle source. Modelling indicates that the magma was produced by a small degree of partial melting (F=2 %) of a primitive, garnet lherzolitic mantle source, possibly containing a minor spinel component.

2021 ◽  
Author(s):  
Thomas Ulrich ◽  
Alice-Agnes Gabriel ◽  
Yann Klinger ◽  
Jean-Paul Ampuero ◽  
Percy Galvez ◽  
...  

<p>The Dead-Sea Transform fault system, a 1200 km-long strike-slip fault forming the tectonic boundary between the African Plate and the Arabian Plate, poses a major seismic hazard to the eastern Mediterranean region. The Gulf of Aqaba, which terminates the Dead Sea fault system to the South, results from a succession of pull-apart basins along the Dead-Sea Transform fault system. The complexity of the fault system in the Gulf has been recently evidenced by Ribot et al. (2020), who compiled a detailed map of its fault traces, based on a new multibeam bathymetric survey of the Gulf. Part of the Gulf of Aqaba was ruptured by an Mw 7.3 earthquake in 1995. Teleseismic data analysis suggests that it may have been a multi-segment rupture (Klinger et al., 1999). This event occurred offshore, in a poorly instrumented region, and therefore the exact sequence of faults that ruptured is not precisely known. The detailed fault mapping of Ribot et al. (2020) offers a fresh view of this earthquake. In particular, it identifies many oblique faults between the major strike-slip faults, which may have linked these segments.</p><p>Relying on this new dataset, on a new back-projection study, and on 3D dynamic rupture modeling with SeisSol (https://github.com/SeisSol/SeisSol), we revisit the 1995 Aqaba earthquake. Using back projection, we identify 2 strong radiators, which we associate with 2 step-overs. Using 3D dynamic rupture modeling, we propose scenarios of the 1995 earthquake, compatible with the various dataset available. Our modeling allows constraining the regional state of stress in the region, acknowledging transtension, offers constraints on the nucleation location and confirms the role of the oblique faults in propagating the rupture to the North. It offers new constraints on the regional seismic hazard, in particular on the expected maximum moment magnitude.</p><p>Finally, we explore the dynamics of the Gulf of Aqaba fault system using earthquake cycle modeling. For that purpose, we rely on QDYN (https://github.com/ydluo/qdyn), a boundary element software, which simulates earthquake cycles under the quasi-dynamic approximation on faults governed by rate-and-state friction and embedded in elastic media. We inform our parameterization of the earthquake cycle modeling using the previously described datasets and modeling results. Recently Galvez et al. (2020) demonstrated the capability of the method to model the dynamics of complex fault system in 3D. Here new code developments are required to adapt the method to the Gulf of Aqaba fault system, e.g. to allow accounting for normal stress changes and for variations in the fault rake.</p><p>Overall, we aim to better understand how large earthquakes may nucleate, propagate, and interact across a complex transform fault network. Our findings, e.g. on fault segmentation or the conditions that promote larger earthquakes, will have important implications for other large strike-slip fault systems worldwide.</p>


Geomorphology ◽  
2012 ◽  
Vol 141-142 ◽  
pp. 134-149 ◽  
Author(s):  
H.G. Dill ◽  
K. Hahne ◽  
F. Shaqour

1990 ◽  
Vol 180 (1) ◽  
pp. 1-13 ◽  
Author(s):  
R.W. Girdler

2002 ◽  
Vol 139 (6) ◽  
pp. 621-640 ◽  
Author(s):  
ABDEL-FATTAH M. ABDEL-RAHMAN

Mesozoic picritic and alkali basalts from central Lebanon represent a significant part of an extension-related Upper Jurassic to Upper Cretaceous discontinuous volcanic belt which occurs throughout the Middle East. Volcanism was associated with an episode of intraplate extension that followed a period of continental break-up, where Mesozoic micro-continental blocks separated from Gondwana as the Neotethys ocean opened in Jurassic times. This volcanic episode produced mafic lava flows ranging in thickness from 5 to 20 m, along with some minor pyroclastic flows. These flows are stratigraphically intercalated with thick carbonate platform deposits. The basalts are made up of about 15–20% olivine (Fo78–91), 30–35% clinopyroxene (salite), 40–50% plagioclase (An56–71) and opaque Fe–Ti oxides (∼5%). Geochemically, the rocks exhibit a relatively wide range of SiO2 (40.4 to 50.5 wt%) and MgO (5.1 to 15.5 wt%) contents, are relatively enriched in TiO2 (1.7 to 3.7 wt%) and vary in composition from alkali picrite and basanite to alkali basalt. The Mg numbers range from 0.56 to 0.70, with an average of 0.63. The rocks are enriched in incompatible trace elements such as Zr (86–247 ppm), Nb (16–66 ppm) and Y (19–30 ppm). Such compositions are typical of those of HIMU-OIB and plume-related magmas. The REE patterns are fractionated ((La/Yb)N = 11), LREE enriched, and are generally parallel to subparallel. Elemental ratios such as K/P (1.1–4.7), La/Ta (11–13), La/Nb (0.57–0.70), Nb/Y (0.68–1.55) and Th/Nb (0.20–0.36) suggest that crustal contamination was minor or absent. This may be related to a rapid ascent of the magma, in agreement with the nature (mafic, oceanic-like) and the small thickness (about 12 km) of the Mesozoic crust of the Eastern Mediterranean region. The 143Nd/144Nd isotopic compositions of the lavas range from 0.512826 to 0.512886, and 87Sr/86Sr from 0.702971 to 0.703669, suggesting a HIMU-like mantle source. Trace element compositions indicate a melt segregation depth of 100–110 km, well within the garnet lherzolite stability field. The geochemical characteristics of the rocks are typical of within-plate alkali basalts, and suggest that the magmas were derived from a fertile, possibly plume-related, enriched mantle source. Petrogenetic modelling indicates that the magmas were produced by very small degrees of batch partial melting (F = 1.5%) of a primitive garnet-bearing mantle source (garnet lherzolite).


2021 ◽  
Author(s):  
Matthieu Ribot ◽  
Yann Klinger ◽  
Edwige Pons-Branchu ◽  
Marthe Lefevre ◽  
Sigurjón Jónsson

<p>Initially described in the late 50’s, the Dead Sea Fault system connects at its southern end to the Red Sea extensive system, through a succession of left-stepping faults. In this region, the left-lateral differential displacement of the Arabian plate with respect to the Sinai micro-plate along the Dead Sea fault results in the formation of a depression corresponding to the Gulf Aqaba. We acquired new bathymetric data in the areas of the Gulf of Aqaba and Strait of Tiran during two marine campaigns (June 2018, September 2019) in order to investigate the location of the active faults, which structure and control the morphology of the area. The high-resolution datasets (10-m posting) allow us to present a new fault map of the gulf and to discuss the seismic potential of the main active faults.</p><p>We also investigated the eastern margin of the Gulf of Aqaba and Tiran island to assess the vertical uplift rate. To do so, we computed high-resolution topographic data and we processed new series of U-Th analyses on corals from the uplifted marine terraces.</p><p>Combining our results with previous studies, we determined the local and the regional uplift in the area of the Gulf of Aqaba and Strait of Tiran.</p><p>Eventually, we discussed the tectonic evolution of the gulf since the last major change of the tectonic regime and we propose a revised tectonic evolution model of the area.</p><p> </p>


Sign in / Sign up

Export Citation Format

Share Document