scholarly journals Syn-kinematic palaeogeographic evolution of the West European Platform: correlation with Alpine plate collision and foreland deformation

2006 ◽  
Vol 85 (2) ◽  
pp. 131-180 ◽  
Author(s):  
W. Sissingh

AbstractSequence stratigraphic correlations indicate that intermittent changes of the kinematic far-field stress-field regimes, and the associated geodynamic re-organisations at the plate-tectonic contacts of the African, Apulian, Iberian and European plates, affected the Tertiary palaeogeographic evolution of the West European Platform through a combination of intra-plate tectonics and fluctuations of relative sea level. A temporal sequence of first-order stages in structural, palaeotopographic and palaeohydrographic development of the platform can be distinguished from the Paleocene onwards. These formative stages are closely linked to major plate-boundary events involving the development of the Pyrenean and Alpine orogens, and can be traced throughout the West European Platform.

Author(s):  
Paul Angrand ◽  
Frédéric Mouthereau

The West European collisional Alpine belts are the result of the inversion, initiated in the middle Cretaceous, of the complex western Neotethys and the Atlantic continental rift domains and closure of remnants of Tethys between North Africa and European cratons. While the kinematics of Africa relative to Europe is well understood, the kinematics of microplates such as Iberia and Adria, within the diffuse collisional plate boundary, are still a matter of debate. We review geological and stratigraphic constraints in the peri-Iberia fold-thrust belts and basins to define the deformation history and crustal segmentation of the West European realm. These data are then implemented with other constraints from recently published kinematic and paleogeographic reconstructions to propose a new regional tectonic and kinematic model of the Western Europe from the late Permian to recent times. Our model shows that the pre-collisional extension between Europe and Africa plates was distributed and oblique, hence building discontinuous rift segments between the southern Alpine Tethys and the Central Atlantic. They were characterised by variably extended crust and narrow oceanic domains segmented across transfer structures and micro-continental blocks. The main tectonic structures that are inherited from the late Variscan orogeny localized both rifting and orogenic belts. We show that several continental blocks, including the Ebro-Sardinia-Corsica block, have been key in accommodating strike-slip, extension, and contraction in both Iberia and Adria. Its existence further allows refining the tectonic relationship between Iberia, Europe and Adria in the Alps. By the Paleogene, the convergence of Africa closed the spatially distributed oceanic domains, except for the Ionian basin. From this time onwards, collision spread over the different continental blocks, allowing an efficient transfer of the deformation from Africa to Europe. The area was eventually affected by the West European Rift, in the late Eocene, which may have influenced the opening of the West Mediterranean. The low convergence associated with collisional evolution of Western Europe permits to resolve the control of the inherited crustal architecture on the distribution of strain in collision zone, that is otherwise lost in more mature collision domain such as the Himalaya.


Geology ◽  
2019 ◽  
Vol 48 (2) ◽  
pp. 103-107 ◽  
Author(s):  
An Yin ◽  
Günther Brandl ◽  
Alfred Kröner

Abstract We addressed when plate-tectonic processes first started on Earth by examining the ca. 2.0 Ga Limpopo orogenic belt in southern Africa. We show through palinspastic reconstruction that the Limpopo orogen originated from >600 km of west-directed thrusting, and the thrust sheet was subsequently folded by north-south compression. The common 2.7–2.6 Ga felsic plutons in the Limpopo thrust sheet and the absence of an arc immediately predating the 2.0 Ga Limpopo thrusting require the Limpopo belt to be an intracontinental structure. The similar duration (∼40 m.y.), slip magnitude (>600 km), slip rate (>15 mm/yr), tectonic setting (intracontinental), and widespread anatexis to those of the Himalayan orogen lead us to propose the Limpopo belt to have developed by continent-continent collision. Specifically, the combined Zimbabwe-Kaapvaal craton (ZKC, named in this study) in the west (present coordinates) was subducting eastward below an outboard craton (OC), which carried an arc equivalent to the Gangdese batholith in southern Tibet prior to the India-Asia collision. The ZKC-OC collision at ca. 2.0 Ga triggered a westward jump in the plate convergence boundary, from the initial suture zone to the Limpopo thrust within the ZKC. Subsequent thrusting accommodated >600 km of plate convergence, possibly driven by ridge push from the west side of the ZKC. As intracontinental plate convergence is a key modern plate-tectonic process, the development of the Limpopo belt implies that the operation of plate tectonics, at least at a local scale, was ongoing by ca. 2.0 Ga on Earth.


2020 ◽  
Author(s):  
Oswald Malcles ◽  
Philippe Vernant ◽  
Jean-François Ritz ◽  
David Fink ◽  
Gaël Cazes ◽  
...  

<p><span><span>In the 60’s, the formulation of the plate tectonic theory changed our understanding of the Earth dynamics. Aiming at explaining the earth first order kinematics, this primary theory of plate tectonic assumed rigid plates, a necessity to efficiently transfer stress from one boundary to another. </span></span></p><p><span><span>If successful to explain, at first order, the plate-boundary evolutions, this theory fails when compared to the unpredicted but identified deformation located inside the plate-domains: the intraplate orogens. Indeed, the intraplate regions are thought to be slowly, if at all, deforming. Therefore, it is expected that intraplate regions do not show important finite deformation, that is to say, no mountains. Some intraplate regions, however, have important relief: the Snowy Mountains (Australia), the Ural Mountains (Russia) or the Massif Central (France) for examples. Traditionally, such regions are interpreted as old structures that are slowly eroded, interpretations that are most of the time weakly constrained. </span></span></p><p> </p><p><span><span>Our study is aiming at providing stronger constraints and then a better understanding of such challenging area that are the intraplate orogen domains. Because direct measurements of deformations (e.g. GNSS: Global Navigation Satellite System or InSAR: Interferometric Synthetic Aperture Radar) are most of the time below the precision level, it is necessary to derive this information from the landscape evolution. To do so, terrestrial cosmogenic nuclide (TCN) technics are a key method, allowing to constraint the temporal landscape evolution. Classically, two TCN-based approaches are used to quantify the landscape evolution rate: burial ages and watershed-wide denudation rates, based on measurement in quartz sediment of 10Be and 26Al concentrations, two radioactive cosmogenic isotopes.</span></span></p><p> </p><p><span><span>Using the Massif Central (France) as study area, we show that this region is currently deforming.</span></span></p><p><span><span>From new geochronological constraints and a geomorphometric study, we propose that the region undergoes an active uplift encompassing the last c.a. 4 Ma. It can be explained by the combination of at least two phenomena: the first one is the uplift triggering event, that has yet to be clearly identified, and the second one: the erosional isostatic adjustment enhancing the first one and possibly continuing after the end of the first one. </span></span></p>


2021 ◽  
Author(s):  
Jiawei Zuo ◽  
Alexander Webb ◽  
Ryan McKenzie ◽  
Tim Johnson ◽  
Christopher Kirkland

<p>Studying the early evolution of terrestrial bodies in our solar systems is challenging. In part, this is because preserved early records are poorly preserved (e.g., Hadean rocks on Earth) and/or hard to access (e.g., rocks on Mars and Venus). Another commonly underappreciated factor is that the testable predictions for the diverse proposed tectonic regimes for early terrestrial bodies are currently underexplored. A better understanding of the consequences of different tectonic regimes can enhance our ability to constrain the early evolution of terrestrial bodies, including the timing of plate tectonic initiation on Earth. In this contribution, we use the example of detrital zircon geochronology to show how first-order predictions for various tectonic modes can be made based on their basic kinematics via relatively simple tools, and how these predictions can provide 1) abundant additional interpretive probabilities for common datasets, and 2) potentially significant implications for the tectonics of early Earth. Using simple Monte Carlo methods with MATLAB codes, we simulated detrital zircon age predictions for basins predicted by heat-pipe tectonics and cold stagnant-lid tectonics based on their relevant numerical models and/or evolutionary diagrams. We show that the first-order predictions for detrital zircon age patterns can be generated by focusing on simulating key mechanisms (e.g., volcanic resurfacing) that control the detrital zircon age characteristics of these two tectonic regimes. Such simulations can be done by simple codes based on a few parameters reflecting basic kinematics of relevant tectonic regimes. We find that differences between new detrital zircon age predictions and those of plate tectonic settings permit better tectonic discrimination via a globally compiled Archean detrital zircon age dataset. The results indicate a transition from heat-pipe tectonics to plate tectonics within the ca. 3.4-3.2 Ga period. Beyond detrital zircon age patterns, we also summarized other possible categories of first-order predictions for non-plate tectonic models, including metamorphic patterns, structural patterns, and crustal thicknesses. Relevant predictions of these categories are variably explored and can potentially be easily modeled or conceptualized via geological tools.</p>


2016 ◽  
Vol 2 (7) ◽  
pp. e1600022 ◽  
Author(s):  
Lydian M. Boschman ◽  
Douwe J. J. van Hinsbergen

The oceanic Pacific Plate started forming in Early Jurassic time within the vast Panthalassa Ocean that surrounded the supercontinent Pangea, and contains the oldest lithosphere that can directly constrain the geodynamic history of the circum-Pangean Earth. We show that the geometry of the oldest marine magnetic anomalies of the Pacific Plate attests to a unique plate kinematic event that sparked the plate’s birth at virtually a point location, surrounded by the Izanagi, Farallon, and Phoenix Plates. We reconstruct the unstable triple junction that caused the plate reorganization, which led to the birth of the Pacific Plate, and present a model of the plate tectonic configuration that preconditioned this event. We show that a stable but migrating triple junction involving the gradual cessation of intraoceanic Panthalassa subduction culminated in the formation of an unstable transform-transform-transform triple junction. The consequent plate boundary reorganization resulted in the formation of a stable triangular three-ridge system from which the nascent Pacific Plate expanded. We link the birth of the Pacific Plate to the regional termination of intra-Panthalassa subduction. Remnants thereof have been identified in the deep lower mantle of which the locations may provide paleolongitudinal control on the absolute location of the early Pacific Plate. Our results constitute an essential step in unraveling the plate tectonic evolution of “Thalassa Incognita” that comprises the comprehensive Panthalassa Ocean surrounding Pangea.


2021 ◽  
Vol 124 (1) ◽  
pp. 141-162 ◽  
Author(s):  
J.F. Dewey ◽  
E.S. Kiseeva ◽  
J.A. Pearce ◽  
L.J. Robb

Abstract Space probes in our solar system have examined all bodies larger than about 400 km in diameter and shown that Earth is the only silicate planet with extant plate tectonics sensu stricto. Venus and Earth are about the same size at 12 000 km diameter, and close in density at 5 200 and 5 500 kg.m-3 respectively. Venus and Mars are stagnant lid planets; Mars may have had plate tectonics and Venus may have had alternating ca. 0.5 Ga periods of stagnant lid punctuated by short periods of plate turnover. In this paper, we contend that Earth has seen five, distinct, tectonic periods characterized by mainly different rock associations and patterns with rapid transitions between them; the Hadean to ca. 4.0 Ga, the Eo- and Palaeoarchaean to ca. 3.1 Ga, the Neoarchaean to ca. 2.5 Ga, the Proterozoic to ca. 0.8 Ga, and the Neoproterozoic and Phanerozoic. Plate tectonics sensu stricto, as we know it for present-day Earth, was operating during the Neoproterozoic and Phanerozoic, as witnessed by features such as obducted supra-subduction zone ophiolites, blueschists, jadeite, ruby, continental thin sediment sheets, continental shelf, edge, and rise assemblages, collisional sutures, and long strike-slip faults with large displacements. From rock associations and structures, nothing resembling plate tectonics operated prior to ca. 2.5 Ga. Archaean geology is almost wholly dissimilar from Proterozoic-Phanerozoic geology. Most of the Proterozoic operated in a plate tectonic milieu but, during the Archaean, Earth behaved in a non-plate tectonic way and was probably characterised by a stagnant lid with heat-loss by pluming and volcanism, together with diapiric inversion of tonalite-trondjemite-granodiorite (TTG) basement diapirs through sinking keels of greenstone supracrustals, and very minor mobilism. The Palaeoarchaean differed from the Neoarchaean in having a more blobby appearance whereas a crude linearity is typical of the Neoarchaean. The Hadean was probably a dry stagnant lid Earth with the bulk of its water delivered during the late heavy bombardment, when that thin mafic lithosphere was fragmented to sink into the asthenosphere and generate the copious TTG Ancient Grey Gneisses (AGG). During the Archaean, a stagnant unsegmented, lithospheric lid characterised Earth, although a case can be made for some form of mobilism with “block jostling”, rifting, compression and strike-slip faulting on a small scale. We conclude, following Burke and Dewey (1973), that there is no evidence for subduction on a global scale before about 2.5 Ga, although there is geochemical evidence for some form of local recycling of crustal material into the mantle during that period. After 2.5 Ga, linear/curvilinear deformation belts were developed, which “weld” cratons together and palaeomagnetism indicates that large, lateral, relative motions among continents had begun by at least 1.88 Ga. The “boring billion”, from about 1.8 to 0.8 Ga, was a period of two super-continents (Nuna, also known as Columbia, and Rodinia) characterised by substantial magmatism of intraplate type leading to the hypothesis that Earth had reverted to a single plate planet over this period; however, orogens with marginal accretionary tectonics and related magmatism and ore genesis indicate that plate tectonics was still taking place at and beyond the bounds of these supercontinents. The break-up of Rodinia heralded modern plate tectonics from about 0.8 Ga. Our conclusions are based, almost wholly, upon geological data sets, including petrology, ore geology and geochemistry, with minor input from modelling and theory.


Sign in / Sign up

Export Citation Format

Share Document