scholarly journals A weaker condition for normality

1994 ◽  
Vol 36 (2) ◽  
pp. 249-253
Author(s):  
Ian Doust

One of the most important results of operator theory is the spectral theorem for normal operators. This states that a normal operator (that is, a Hilbert space operator T such that T*T= TT*), can be represented as an integral with respect to a countably additive spectral measure,Here E is a measure that associates an orthogonal projection with each Borel subset of ℂ. The countable additivity of this measure means that if x Eℋ can be written as a sum of eigenvectors then this sum must converge unconditionally.

1970 ◽  
Vol 68 (2) ◽  
pp. 393-400 ◽  
Author(s):  
R. G. Douglas ◽  
Carl Pearcy

It has been known for some time that one can construct a proof of the spectral theorem for a normal operator on a Hilbert space by applying the Gelfand representation theorem to the Abelian von Neumann algebra generated by the normal operator, and using the fact that the maximal ideal space of an Abelian von Neumann algebra is extremely disconnected. This, in fact, is the spirit of the monograph (8). On the other hand, it is difficult to find in print accounts of the spectral theorem from this viewpoint and, in particular, the treatment in (8) uses a considerable amount of measure theory and does not have the proof of the spectral theorem as its main objective.


Author(s):  
S. J. Bernau ◽  
F. Smithies

We recall that a bounded linear operator T in a Hilbert space or finite-dimensional unitary space is said to be normal if T commutes with its adjoint operator T*, i.e. TT* = T*T. Most of the proofs given in the literature for the spectral theorem for normal operators, even in the finite-dimensional case, appeal to the corresponding results for Hermitian or unitary operators.


1965 ◽  
Vol 17 ◽  
pp. 1030-1040 ◽  
Author(s):  
Earl A. Coddington

The domain and null space of an operator A in a Hilbert space will be denoted by and , respectively. A formally normal operatorN in is a densely defined closed (linear) operator such that , and for all A normal operator in is a formally normal operator N satisfying 35 . A study of the possibility of extending a formally normal operator N to a normal operator in the given , or in a larger Hilbert space, was made in (1).


1969 ◽  
Vol 21 ◽  
pp. 1421-1426 ◽  
Author(s):  
Heydar Radjavi

The main result of this paper is that every normal operator on an infinitedimensional (complex) Hilbert space ℋ is the product of four self-adjoint operators; our Theorem 4 is an actually stronger result. A large class of normal operators will be given which cannot be expressed as the product of three self-adjoint operators.This work was motivated by a well-known resul t of Halmos and Kakutani (3) that every unitary operator on ℋ is the product of four symmetries, i.e., operators that are self-adjoint and unitary.1. By “operator” we shall mean bounded linear operator. The space ℋ will be infinite-dimensional (separable or non-separable) unless otherwise specified. We shall denote the class of self-adjoint operators on ℋ by and that of symmetries by .


1983 ◽  
Vol 35 (2) ◽  
pp. 274-299 ◽  
Author(s):  
C.-K. Fong ◽  
J. A. R. Holbrook

1.1. Over the past 15 years there has grown up quite an extensive theory of operator norms related to the numerical radius1of a Hilbert space operator T. Among the many interesting developments, we may mention:(a) C. Berger's proof of the “power inequality”2(b) R. Bouldin's result that3for any isometry V commuting with T;(c) the unification by B. Sz.-Nagy and C. Foias, in their theory of ρ-dilations, of the Berger dilation for T with w(T) ≤ 1 and the earlier theory of strong unitary dilations (Nagy-dilations) for norm contractions;(d) the result by T. Ando and K. Nishio that the operator radii wρ(T) corresponding to the ρ-dilations of (c) are log-convex functions of ρ.


Mathematics ◽  
2019 ◽  
Vol 7 (10) ◽  
pp. 903
Author(s):  
Marat V. Markin ◽  
Edward S. Sichel

We give a simple, straightforward proof of the non-hypercyclicity of an arbitrary (bounded or not) normal operator A in a complex Hilbert space as well as of the collection e t A t ≥ 0 of its exponentials, which, under a certain condition on the spectrum of A, coincides with the C 0 -semigroup generated by it. We also establish non-hypercyclicity for symmetric operators.


1976 ◽  
Vol 17 (2) ◽  
pp. 158-160
Author(s):  
Guyan Robertson

In what follows, B(H) will denote the C*-algebra of all bounded linear operators on a Hilbert space H. Suppose we are given a C*-subalgebra A of B(H), which we shall suppose contains the identity operator 1. We are concerned with the existence of states f of B(H) which satisfy the following trace-like relation relative to A:Our first result shows the existence of states f satisfying (*), when A is the C*-algebra C*(x) generated by a normaloid operator × and the identity. This allows us to give simple proofs of some well-known results in operator theory. Recall that an operator × is normaloid if its operator norm equals its spectral radius.


1982 ◽  
Vol 34 (4) ◽  
pp. 883-887 ◽  
Author(s):  
A. R. Lubin

1. An n-tuple S = (S1, …, Sn) of commuting bounded linear operators on a Hilbert space H is said to have commuting normal extension if and only if there exists an n-tuple N = (N1, …, Nn) of commuting normal operators on some larger Hilbert space K ⊃ H with the restrictions Ni|H = Si, i = 1, …, n. If we takethe minimal reducing subspace of N containing H, then N is unique up to unitary equivalence and is called the c.n.e. of S. (Here J denotes the multi-index (j1, …, jn) of nonnegative integers and N*J = N1*jl … Nn*jn and we emphasize that c.n.e. denotes minimal commuting normal extension.) If n = 1, then S1 = S is called subnormal and N1 = N its minimal normal extension (m.n.e.).


2021 ◽  
Vol 19 ◽  
pp. 3
Author(s):  
V.F. Babenko ◽  
R.O. Bilichenko

The Taikov inequality, which estimates $L_{\infty}$-norm of intermediate derivative by $L_2$-norms of a function and its higher derivative, is extended on arbitrary powers of normal operator acting in Hilbert space.


2021 ◽  
Vol 32 (1) ◽  
pp. 10
Author(s):  
Salim Dawood M. ◽  
Jaafer Hmood Eidi

Through this paper, we submitted  some types of quasi normal operator is called be (k*-N)- quasi normal operator of order n defined on a Hilbert space H, this concept is generalized of some kinds of  quasi normal operator appear recently form most researchers in the  field of functional analysis, with some properties  and characterization of this operator   as well as, some basic operation such as addition and multiplication of these operators had been given, finally the relationships of this operator proved with some examples to illustrate conversely and introduce the sufficient conditions to satisfied this case with other types had been studied.


Sign in / Sign up

Export Citation Format

Share Document