scholarly journals On (P*-N) quasi normal operators Of order "n" In Hilbert space

2021 ◽  
Vol 32 (1) ◽  
pp. 10
Author(s):  
Salim Dawood M. ◽  
Jaafer Hmood Eidi

Through this paper, we submitted  some types of quasi normal operator is called be (k*-N)- quasi normal operator of order n defined on a Hilbert space H, this concept is generalized of some kinds of  quasi normal operator appear recently form most researchers in the  field of functional analysis, with some properties  and characterization of this operator   as well as, some basic operation such as addition and multiplication of these operators had been given, finally the relationships of this operator proved with some examples to illustrate conversely and introduce the sufficient conditions to satisfied this case with other types had been studied.

1965 ◽  
Vol 17 ◽  
pp. 1030-1040 ◽  
Author(s):  
Earl A. Coddington

The domain and null space of an operator A in a Hilbert space will be denoted by and , respectively. A formally normal operatorN in is a densely defined closed (linear) operator such that , and for all A normal operator in is a formally normal operator N satisfying 35 . A study of the possibility of extending a formally normal operator N to a normal operator in the given , or in a larger Hilbert space, was made in (1).


1969 ◽  
Vol 21 ◽  
pp. 1421-1426 ◽  
Author(s):  
Heydar Radjavi

The main result of this paper is that every normal operator on an infinitedimensional (complex) Hilbert space ℋ is the product of four self-adjoint operators; our Theorem 4 is an actually stronger result. A large class of normal operators will be given which cannot be expressed as the product of three self-adjoint operators.This work was motivated by a well-known resul t of Halmos and Kakutani (3) that every unitary operator on ℋ is the product of four symmetries, i.e., operators that are self-adjoint and unitary.1. By “operator” we shall mean bounded linear operator. The space ℋ will be infinite-dimensional (separable or non-separable) unless otherwise specified. We shall denote the class of self-adjoint operators on ℋ by and that of symmetries by .


Mathematics ◽  
2019 ◽  
Vol 7 (10) ◽  
pp. 903
Author(s):  
Marat V. Markin ◽  
Edward S. Sichel

We give a simple, straightforward proof of the non-hypercyclicity of an arbitrary (bounded or not) normal operator A in a complex Hilbert space as well as of the collection e t A t ≥ 0 of its exponentials, which, under a certain condition on the spectrum of A, coincides with the C 0 -semigroup generated by it. We also establish non-hypercyclicity for symmetric operators.


Author(s):  
C. R. Putnam

SynopsisLet T be a hyponormal operator on a Hilbert space, so that T*T – TT*≧ 0. Let T have the Cartesian representation T = H + iJ where H has the spectral family {Et} and suppose that EtJ − JEt is compact for almost all t on a Borei set α satisfying E(α) = I. The principal result (Theorem 3) is that under these hypotheses T must be normal. In case T is hyponormal and essentially normal some sufficient conditions are given assuring that, for a fixed t, EtJ − JEt is compact.


2008 ◽  
Vol 39 (4) ◽  
pp. 347-352 ◽  
Author(s):  
Gyan Prakash Tripathi ◽  
Nand Lal

A bounded linear operator $ T $ on a Hilbert space $ H $ is called antinormal if the distance of $ T $ from the set of all normal operators is equal to norm of $ T $. In this paper, we give a complete characterization of antinormal composition operators on $ \ell^2 $, where $ \ell^2 $ is the Hilbert space of all square summable sequences of complex numbers under standard inner product on it.


2021 ◽  
Vol 19 ◽  
pp. 3
Author(s):  
V.F. Babenko ◽  
R.O. Bilichenko

The Taikov inequality, which estimates $L_{\infty}$-norm of intermediate derivative by $L_2$-norms of a function and its higher derivative, is extended on arbitrary powers of normal operator acting in Hilbert space.


1988 ◽  
Vol 40 (6) ◽  
pp. 1322-1330 ◽  
Author(s):  
Pei Yuan Wu

Which bounded linear operator on a complex, separable Hilbert space can be expressed as the product of finitely many normal operators? What is the answer if “normal” is replaced by “Hermitian”, “nonnegative” or “positive”? Recall that an operator T is nonnegative (resp. positive) if (Tx, x) ≧ 0 (resp. (Tx, x) ≥ 0) for any x ≠ 0 in the underlying space. The purpose of this paper is to provide complete answers to these questions.If the space is finite-dimensional, then necessary and sufficient conditions for operators expressible as such are already known. For normal operators, this is easy. By the polar decomposition, every operator is the product of two normal operators. An operator is the product of Hermitian operators if and only if its determinant is real; moreover, in this case, 4 Hermitian operators suffice and 4 is the smallest such number (cf. [10]).


1970 ◽  
Vol 68 (2) ◽  
pp. 393-400 ◽  
Author(s):  
R. G. Douglas ◽  
Carl Pearcy

It has been known for some time that one can construct a proof of the spectral theorem for a normal operator on a Hilbert space by applying the Gelfand representation theorem to the Abelian von Neumann algebra generated by the normal operator, and using the fact that the maximal ideal space of an Abelian von Neumann algebra is extremely disconnected. This, in fact, is the spirit of the monograph (8). On the other hand, it is difficult to find in print accounts of the spectral theorem from this viewpoint and, in particular, the treatment in (8) uses a considerable amount of measure theory and does not have the proof of the spectral theorem as its main objective.


Filomat ◽  
2018 ◽  
Vol 32 (14) ◽  
pp. 5063-5069 ◽  
Author(s):  
Muneo Chō ◽  
Biljana Nacevska

For a bounded linear operator T on a complex Hilbert space and n ? N, T is said to be n-normal if T*Tn = TnT*. In this paper we show that if T is a 2-normal operator and satisfies ?(T) ? (-?(T)) ? {0}, then T is isoloid and ?(T) = ?a(T). Under the same assumption, we show that if z and w are distinct eigenvalues of T, then ker(T-z)? ker(T-w). And if non-zero number z ? C is an isolated point of ?(T), then we show that ker(T-z) is a reducing subspace for T. We show that if T is a 2-normal operator satisfying ?(T) ?(-?(T)) = 0, then Weyl?s theorem holds for T. Similarly, we show spectral properties of n-normal operators under similar assumption. Finally, we introduce (n,m)-normal operators and show some properties of this kind of operators.


1994 ◽  
Vol 36 (2) ◽  
pp. 249-253
Author(s):  
Ian Doust

One of the most important results of operator theory is the spectral theorem for normal operators. This states that a normal operator (that is, a Hilbert space operator T such that T*T= TT*), can be represented as an integral with respect to a countably additive spectral measure,Here E is a measure that associates an orthogonal projection with each Borel subset of ℂ. The countable additivity of this measure means that if x Eℋ can be written as a sum of eigenvectors then this sum must converge unconditionally.


Sign in / Sign up

Export Citation Format

Share Document