abelian von neumann algebra
Recently Published Documents


TOTAL DOCUMENTS

6
(FIVE YEARS 0)

H-INDEX

3
(FIVE YEARS 0)

Entropy ◽  
2020 ◽  
Vol 22 (11) ◽  
pp. 1292
Author(s):  
Florio M. Ciaglia ◽  
Fabio Di Di Cosmo ◽  
Alberto Ibort ◽  
Giuseppe Marmo

The evolution of states of the composition of classical and quantum systems in the groupoid formalism for physical theories introduced recently is discussed. It is shown that the notion of a classical system, in the sense of Birkhoff and von Neumann, is equivalent, in the case of systems with a countable number of outputs, to a totally disconnected groupoid with Abelian von Neumann algebra. The impossibility of evolving a separable state of a composite system made up of a classical and a quantum one into an entangled state by means of a unitary evolution is proven in accordance with Raggio’s theorem, which is extended to include a new family of separable states corresponding to the composition of a system with a totally disconnected space of outcomes and a quantum one.



2007 ◽  
Vol 100 (1) ◽  
pp. 75 ◽  
Author(s):  
Yoshikazu Katayama ◽  
Masamichi Takesaki

To study outer actions $\alpha$ of a group $G$ on a factor $\mathcal M$ of type $\mathrm{III}_\lambda$, $0<\lambda<1$, we study first the cohomology group of a group with the unitary group of an abelian von Neumann algebra as a coefficient group and establish a technique to reduce the coefficient group to the torus $\mathsf T$ by the Shapiro mechanism based on the groupoid approach. We then show a functorial construction of outer actions of a countable discrete amenable group on an AFD factor of type $\mathrm{III}_\lambda$, sharpening the result in [17, §4]. The periodicity of the flow of weights on a factor $\mathcal M$ of type $\mathrm{III}_\lambda$ allows us to introduce an equivariant commutative square directly related to the discrete core. But this makes it necessary to introduce an enlarged group $\mathrm{Aut}(\mathcal M)_{m}$ relative to the modulus homomorphism $m=\mod\colon \mathrm{Aut}(\mathcal M)\to \mathsf R/T'\mathsf Z$. We then discuss the reduced modified HJR-exact sequence, which allows us to describe the invariant of outer action $\alpha$ in a simpler form than the one for a general AFD factor: for example, the cohomology group $H_{m,s}^{out}(G,N,\mathsf T)$ of modular obstructions is a compact abelian group. Making use of these reductions, we prove the classification result of outer actions of $G$ on an AFD factor $\mathcal M$ of type $\mathrm{III}_{\lambda}$.



2005 ◽  
Vol 79 (2) ◽  
pp. 231-241 ◽  
Author(s):  
Paul Jolissaint

AbstractLet F′ be the commutator subgroup of F and let Γ0 be the cyclic group generated by the first generator of F. We continue the study of the central sequences of the factor L(F′), and we prove that the abelian von Neumann algebra L(Γ0) is a strongly singular MASA in L(F). We also prove that the natural action of F on [0, 1] is ergodic and that its ratio set is {0} ∪ {2k; k ∞ Z}.



1981 ◽  
Vol 33 (6) ◽  
pp. 1319-1327 ◽  
Author(s):  
A. Katavolos

1. The central objects in integration theory can be considered to be an abelian Von Neumann algebra, L∞, of the measure space, together with a (not necessarily finite-valued) positive linear functional on it, the integral (see [10]). It is natural, therefore, to attempt to construct a “non-commutative” integration theory starting with a non-abelian Von Neumann algebra. Segal [9] and Dixmier [2] have developed such a theory, and constructed the Non-Commutative Lp spaces associated with a Von Neumann algebra M and a normal, faithful, semifinite trace (i.e. a unitarily invariant weight) t on M. They show that there exists a unique ultra-weakly dense *-ideal J of M such that t (extends to) a positive linear form on J . A generalisation of the Hölder inequality then shows that, for 1 ≦ p < ∞, the functionis a norm on J, denoted by || • ||p.



1974 ◽  
Vol 18 (2) ◽  
pp. 153-160 ◽  
Author(s):  
Peter G. Dodds

The usual technique for dealing with an abelian W*-algebra is to consider it, via the Gelfand theory, as the algebra of all continuous complex-valued functions on an extremally disconnected compact Hausdorff space with a separating family of normal linear functionals. An alternative approach, outlined in [2] and [10], is to develop the theory within the framework of Riesz spaces (linear vector lattices) where the order properties of the self-adjoint operators play an important and natural role. It has been known for a long time that the self-adjoint part of an abelian W*-algebra is a Dedekind complete Riesz space under the natural ordering of self-adjoint operators, but it is only relatively recently that a proof of this fact has been given that is independent of the Gelfand theory, and the interested reader may consult [2] or [10] for the details. This approach is essentially foreshadowed in [6] and provides a very satisfying introduction to the theory of commutative rings of operators. From this point of view, the spectral theorem for self-adjoint operators falls naturally into place as an easy consequence of the spectral theorem of H. Freudenthal. In this paper, the line of approach via Riesz spaces is developed further and several well known results are shown to follow as elementary consequences of the order structure of the algebra.



1970 ◽  
Vol 68 (2) ◽  
pp. 393-400 ◽  
Author(s):  
R. G. Douglas ◽  
Carl Pearcy

It has been known for some time that one can construct a proof of the spectral theorem for a normal operator on a Hilbert space by applying the Gelfand representation theorem to the Abelian von Neumann algebra generated by the normal operator, and using the fact that the maximal ideal space of an Abelian von Neumann algebra is extremely disconnected. This, in fact, is the spirit of the monograph (8). On the other hand, it is difficult to find in print accounts of the spectral theorem from this viewpoint and, in particular, the treatment in (8) uses a considerable amount of measure theory and does not have the proof of the spectral theorem as its main objective.



Sign in / Sign up

Export Citation Format

Share Document