EMBEDDING THEOREM OF THE WEIGHTED SOBOLEV–LORENTZ SPACES

2021 ◽  
pp. 1-18
Author(s):  
HONGLIANG LI ◽  
JIANMIAO RUAN ◽  
QINXIU SUN

Abstract Weight criteria for embedding of the weighted Sobolev–Lorentz spaces to the weighted Besov–Lorentz spaces built upon certain mixed norms and iterated rearrangement are investigated. This gives an improvement of some known Sobolev embedding. We achieve the result based on different norm inequalities for the weighted Besov–Lorentz spaces defined in some mixed norms.

2007 ◽  
Vol 5 (2) ◽  
pp. 183-198 ◽  
Author(s):  
Jon Johnsen ◽  
Winfried Sickel

The article deals with a simplified proof of the Sobolev embedding theorem for Lizorkin–Triebel spaces (that contain theLp-Sobolev spacesHpsas special cases). The method extends to a proof of the corresponding fact for general Lizorkin–Triebel spaces based on mixedLp-norms. In this context a Nikol' skij–Plancherel–Polya inequality for sequences of functions satisfying a geometric rectangle condition is proved. The results extend also to anisotropic spaces of the quasi-homogeneous type.


2008 ◽  
Vol 103 (2) ◽  
pp. 278
Author(s):  
Boris Simonov ◽  
Sergey Tikhonov

In this paper we obtain necessary and sufficient conditions for double trigonometric series to belong to generalized Lorentz spaces, not symmetric in general. Estimates for the norms are given in terms of coefficients.


2022 ◽  
Vol 32 (3) ◽  
Author(s):  
Dorothee D. Haroske ◽  
Cornelia Schneider ◽  
Kristóf Szarvas

AbstractWe study unboundedness properties of functions belonging to Lebesgue and Lorentz spaces with variable and mixed norms using growth envelopes. Our results extend the ones for the corresponding classical spaces in a natural way. In the case of spaces with mixed norms, it turns out that the unboundedness in the worst direction, i.e., in the direction where $$p_{i}$$ p i is the smallest, is crucial. More precisely, the growth envelope is given by $${\mathfrak {E}}_{{\mathsf {G}}}(L_{\overrightarrow{p}}(\varOmega )) = (t^{-1/\min \{p_{1}, \ldots , p_{d} \}},\min \{p_{1}, \ldots , p_{d} \})$$ E G ( L p → ( Ω ) ) = ( t - 1 / min { p 1 , … , p d } , min { p 1 , … , p d } ) for mixed Lebesgue and $${\mathfrak {E}}_{{\mathsf {G}}}(L_{\overrightarrow{p},q}(\varOmega )) = (t^{-1/\min \{p_{1}, \ldots , p_{d} \}},q)$$ E G ( L p → , q ( Ω ) ) = ( t - 1 / min { p 1 , … , p d } , q ) for mixed Lorentz spaces, respectively. For the variable Lebesgue spaces, we obtain $${\mathfrak {E}}_{{\mathsf {G}}}(L_{p(\cdot )}(\varOmega )) = (t^{-1/p_{-}},p_{-})$$ E G ( L p ( · ) ( Ω ) ) = ( t - 1 / p - , p - ) , where $$p_{-}$$ p - is the essential infimum of $$p(\cdot )$$ p ( · ) , subject to some further assumptions. Similarly, for the variable Lorentz space, it holds$${\mathfrak {E}}_{{\mathsf {G}}}(L_{p(\cdot ),q}(\varOmega )) = (t^{-1/p_{-}},q)$$ E G ( L p ( · ) , q ( Ω ) ) = ( t - 1 / p - , q ) . The growth envelope is used for Hardy-type inequalities and limiting embeddings. In particular, as a by-product, we determine the smallest classical Lebesgue (Lorentz) space which contains a fixed mixed or variable Lebesgue (Lorentz) space, respectively.


Sign in / Sign up

Export Citation Format

Share Document