Cotton radiation use efficiency response to plant growth regulators

2012 ◽  
Vol 150 (5) ◽  
pp. 595-602 ◽  
Author(s):  
E. D. GONIAS ◽  
D. M. OOSTERHUIS ◽  
A. C. BIBI

SUMMARYPlant growth regulators are widely used in cotton production to improve crop management. Previous research has demonstrated changes in crop growth, dry matter (DM) partitioning and lint yield of cotton after the application of plant growth regulators. However, no reports are available demonstrating the effect of plant growth regulators on light interception and radiation use efficiency (RUE). Field studies were conducted in Fayetteville, Arkansas, USA in 2006 and 2007. RUE was estimated for the period between the pinhead square stage (PHS) of growth and 3 weeks after first flower (FF+3) from plots receiving three applications of the nitrophenolate and mepiquat chloride with Bacillus cereus plant growth regulators (Chaperone™) at 7·19 g a.i./ha and Pix Plus® at 41·94 g a.i./ha compared with an untreated control. No differences between the Chaperone treatment and the untreated control were found in the present study. However, Pix Plus significantly reduced plant height (both 2006 and 2007) and leaf area (2007 only), and altered the canopy structure of the crop as recorded by increased values of canopy extinction coefficient. Although DM accumulation was found not to be affected by plant growth regulator treatments, RUE was significantly increased after Pix Plus application, by 33·2%. RUE was increased because less light was intercepted by the Pix Plus treatment for the same biomass production, and this is probably a result of changes in photosynthetic capacity of the leaves and changes in light distribution throughout the canopy.

2016 ◽  
Vol 53 (2) ◽  
pp. 210-225 ◽  
Author(s):  
GUILHERME M. TORRES ◽  
ADRIAN KOLLER ◽  
RANDY TAYLOR ◽  
WILLIAM R. RAUN

SUMMARYSeed-oriented planting provides a manner to influence canopy structure. The purpose of this research was to improve maize light interception using seed-oriented planting to manipulate leaf azimuth across the row thereby minimizing leaf overlap. To achieve leaf azimuths oriented preferentially across the row, seeds were planted: (i) upright with caryopsis pointed down, parallel to the row (upright); and (ii) laying flat, embryo up, perpendicular to the row (flat). These treatments were compared to conventionally planted seeds with resulting random leaf azimuth distribution. Seed orientation effects were contrasted with three levels of plant population and two levels of hybrid specific canopy structures. Increased plant population resulted in greater light interception but yield tended to decrease as plant population increased. The planophile hybrid produced consistently greater yields than the erectophile hybrid. The difference between planophile and erectophile hybrids ranged from 283 to 903 kg ha−1. Overall, mean grain yield for upright and flat seed placement increased by 351 and 463 kg ha−1 compared to random seed placement. Greater cumulative intercepted photosynthetically active radiation (CIPAR) was found for oriented seeds rather than random-oriented seeds. At physiological maturity upright, flat and random-oriented seeds intercepted 555, 525 and 521 MJ m−2 of PAR, respectively. Maize yield responded positively to improved light interception and better radiation use efficiency. Under irrigated conditions, precision planting of maize increased yield by 9 to 14% compared to random-oriented seeds.


2020 ◽  
Vol 23 ◽  
pp. 03011
Author(s):  
Yuliya M. Andriyanova ◽  
Irina V. Sergeyeva ◽  
Nataliya N. Gusakova ◽  
Yuliya M. Mokhonko

Stress protectors (adaptogens) are among the most important factors that regulate growth processes at all stages of plant development. This article presents results of field studies of the effect of new synthetic plant growth regulators of stress protectors (adaptogens) on the elements of productivity and yield of spring oats of the Skakun variety. The obtained results during the research showed that all the studied derivatives of peredazinones are adaptogens and they contribute to an increased productivity and increased yield of spring oats. We studied the effect of pre-sowing treatment of seeds with new synthetic plant growth regulators of stress protectors on the quality indicators of cereal production of Skakun oats (protein, starch and amylolytic enzymes content in the cereal). Pre-sowing treatment of oat seeds increases the amount of protein in the cereal up to 15%, starch – up to 25%, amylase – up to 20%. We proved the ability of stress protectors to minimize the negative impact of heavy metals (lead, zinc) on agrophytocenoses, which will make it possible to obtain environmentally friendly cereal products when cultivating oats in anthropogenically polluted areas of the Saratov Oblast.


2014 ◽  
Vol 11 (7) ◽  
pp. 2069-2082 ◽  
Author(s):  
T. Houska ◽  
S. Multsch ◽  
P. Kraft ◽  
H.-G. Frede ◽  
L. Breuer

Abstract. Computer simulations are widely used to support decision making and planning in the agriculture sector. On the one hand, many plant growth models use simplified hydrological processes and structures – for example, by the use of a small number of soil layers or by the application of simple water flow approaches. On the other hand, in many hydrological models plant growth processes are poorly represented. Hence, fully coupled models with a high degree of process representation would allow for a more detailed analysis of the dynamic behaviour of the soil–plant interface. We coupled two of such high-process-oriented independent models and calibrated both models simultaneously. The catchment modelling framework (CMF) simulated soil hydrology based on the Richards equation and the van Genuchten–Mualem model of the soil hydraulic properties. CMF was coupled with the plant growth modelling framework (PMF), which predicts plant growth on the basis of radiation use efficiency, degree days, water shortage and dynamic root biomass allocation. The Monte Carlo-based generalized likelihood uncertainty estimation (GLUE) method was applied to parameterize the coupled model and to investigate the related uncertainty of model predictions. Overall, 19 model parameters (4 for CMF and 15 for PMF) were analysed through 2 × 106 model runs randomly drawn from a uniform distribution. The model was applied to three sites with different management in Müncheberg (Germany) for the simulation of winter wheat (Triticum aestivum L.) in a cross-validation experiment. Field observations for model evaluation included soil water content and the dry matter of roots, storages, stems and leaves. The shape parameter of the retention curve n was highly constrained, whereas other parameters of the retention curve showed a large equifinality. We attribute this slightly poorer model performance to missing leaf senescence, which is currently not implemented in PMF. The most constrained parameters for the plant growth model were the radiation-use efficiency and the base temperature. Cross validation helped to identify deficits in the model structure, pointing out the need for including agricultural management options in the coupled model.


HortScience ◽  
1998 ◽  
Vol 33 (4) ◽  
pp. 704-706 ◽  
Author(s):  
Edward W. Bush ◽  
Wayne C. Porter ◽  
Dennis P. Shepard ◽  
James N. McCrimmon

Field studies were performed on established carpetgrass (Axonopus affinis Chase) in 1994 and 1995 to evaluate plant growth regulators (PGRs) and application rates. Trinexapac-ethyl (0.48 kg·ha-1) improved turf quality and reduced cumulative vegetative growth (CVG) of unmowed and mowed plots by 38% and 46%, respectively, in 1995, and suppressed seedhead height in unmowed turf by >31% 6 weeks after treatment (WAT) both years. Mefluidide (0.14 and 0.28 kg·ha-1) had little effect on carpetgrass. Sulfometuron resulted in unacceptable phytotoxicity (>20%) 2 WAT in 1994 and 18% phytotoxicity in 1995. In 1995, sulfometuron reduced mowed carpetgrass CVG 21%, seedhead number 47%, seedhead height 36%, clipping yield 24%, and reduced the number of mowings required. It also improved unmowed carpetgrass quality at 6 WAT. Sethoxydim (0.11 kg·ha-1) suppressed seedhead formation by 60% and seedhead height by 20%, and caused moderate phytotoxicity (13%) in 1995. Sethoxydim (0.22 kg·ha-1) was unacceptably phytotoxic (38%) in 1994, but only slightly phytotoxic (7%) in 1995, reduced clipping yields (>24%), and increased quality of mowed carpetgrass both years. Fluazasulfuron (0.027 and 0.054 kg·ha-1) phytotoxicity ratings were unacceptable at 2 WAT in 1994, but not in 1995. Fluazasulfuron (0.054 kg·ha-1) reduced seedhead height by 23% to 26% in both years. Early seedhead formation was suppressed >70% when applied 2 WAT in 1994, and 43% when applied 6 WAT in 1995. The effects of the chemicals varied with mowing treatment and evaluation year. Chemical names used: 4-(cyclopropyl-x-hydroxy-methylene)-3,5 dioxo-cyclohexane-carboxylic acid ethyl ester (trinexapac-ethyl); N-2,4-dimethyl-5-[[(trifluoro-methyl)sulfonyl]amino]phenyl]acetamide] (mefluidide); [methyl 2-[[[[(4,6-dimethyl-2-pyrimidinyl) amino]carbonyl] amino] sulfonyl]benzoate)] (sulfometuron); (2-[1-(ethoxyimino)butyl-5-[(2-ethylthio)propyl]-3-hydroxy-2-cyclohexen-1-one) (sethoxydim); 1-(4,6-dimethoxypyrimidin-2yl)-3-[(3-trifluoromethyl-pyridin 2-yl) sulphonyl] urea (fluazasulfuron).


2018 ◽  
Vol 90 (4) ◽  
pp. 3265-3283 ◽  
Author(s):  
FELIPE SCHWERZ ◽  
SANDRO L.P. MEDEIROS ◽  
ELVIS F. ELLI ◽  
ELDER ELOY ◽  
JAQUELINE SGARBOSSA ◽  
...  

2013 ◽  
Vol 10 (12) ◽  
pp. 19509-19540 ◽  
Author(s):  
T. Houska ◽  
S. Multsch ◽  
P. Kraft ◽  
H.-G. Frede ◽  
L. Breuer

Abstract. Computer simulations are widely used to support decision making and planning in the agriculture sector. On the one hand, many plant growth models use simplified hydrological processes and structures, e.g. by the use of a small number of soil layers or by the application of simple water flow approaches. On the other hand, in many hydrological models plant growth processes are poorly represented. Hence, fully coupled models with a high degree of process representation would allow a more detailed analysis of the dynamic behaviour of the soil–plant interface. We used the Python programming language to couple two of such high process oriented independent models and to calibrate both models simultaneously. The Catchment Modelling Framework (CMF) simulated soil hydrology based on the Richards equation and the van-Genuchten–Mualem retention curve. CMF was coupled with the Plant growth Modelling Framework (PMF), which predicts plant growth on the basis of radiation use efficiency, degree days, water shortage and dynamic root biomass allocation. The Monte Carlo based Generalised Likelihood Uncertainty Estimation (GLUE) method was applied to parameterize the coupled model and to investigate the related uncertainty of model predictions to it. Overall, 19 model parameters (4 for CMF and 15 for PMF) were analysed through 2 × 106 model runs randomly drawn from an equally distributed parameter space. Three objective functions were used to evaluate the model performance, i.e. coefficient of determination (R2), bias and model efficiency according to Nash Sutcliffe (NSE). The model was applied to three sites with different management in Muencheberg (Germany) for the simulation of winter wheat (Triticum aestivum L.) in a cross-validation experiment. Field observations for model evaluation included soil water content and the dry matters of roots, storages, stems and leaves. Best parameter sets resulted in NSE of 0.57 for the simulation of soil moisture across all three sites. The shape parameter of the retention curve n was highly constrained whilst other parameters of the retention curve showed a large equifinality. The root and storage dry matter observations were predicted with a NSE of 0.94, a low bias of −58.2 kg ha−1 and a high R2 of 0.98. Dry matters of stem and leaves were predicted with less, but still high accuracy (NSE = 0.79, bias = 221.7 kg ha−1, R2 = 0.87). We attribute this slightly poorer model performance to missing leaf senescence which is currently not implemented in PMF. The most constrained parameters for the plant growth model were the radiation-use-efficiency and the base temperature. Cross validation helped to identify deficits in the model structure, pointing out the need of including agricultural management options in the coupled model.


2016 ◽  
Vol 26 (4) ◽  
pp. 493-496 ◽  
Author(s):  
Amy Barker ◽  
Ingram McCall ◽  
Brian E. Whipker

Three plant growth regulators (PGRs) were applied as substrate drenches; paclobutrazol (1, 2, 4, or 8 mg/pot), flurprimidol (0.5, 1, 2, or 4 mg/pot), or ethephon (125, 250, 500, or 1000 mg·L−1), plus an untreated control, to determine the efficacy of controlling excessive growth of ‘Imperial Dark Blue’ plumbago (Plumbago auriculata). No delay in flowering occurred with any of the PGR drenches, as compared with the untreated control. Plumbagos were responsive to both paclobutrazol and flurprimidol drenches. Concentrations of paclobutrazol and flurprimidol ≥1 mg/pot resulted in shorter plant heights than the untreated control. For producers desiring a moderate to high degree of control, 1 mg/pot drenches of either PGR could be suitable. All flurprimidol and paclobutrazol concentrations greater than 1 mg/pot resulted in excessive stunting and should be avoided. All ethephon drench concentrations were more consistent in controlling diameter, and increasing branching and flowering than paclobutrazol or flurprimidol. Based on the results of this study, the growth suppression of ethephon drenches was gradual, limiting overdose risks. Although plant diameters were not as small as plants treated with paclobutrazol or flurprimidol, diameter control was still adequate, and plants treated with ethephon drenches had a higher aesthetic appeal due to a more full appearance and increased flowering. With the use of an ethephon drench at 125 to 250 mg·L−1, plumbago producers have another PGR available to control excessive stem elongation and improve the flowering of plumbago.


Sign in / Sign up

Export Citation Format

Share Document