turf quality
Recently Published Documents


TOTAL DOCUMENTS

214
(FIVE YEARS 17)

H-INDEX

21
(FIVE YEARS 1)

2022 ◽  
Vol 147 (1) ◽  
pp. 18-24
Author(s):  
Stephanie Rossi ◽  
Bingru Huang

Heat stress symptoms in cool-season plants are characterized by loss of chlorophyll (Chl) and membrane stability, as well as oxidative damage. The objectives of this study were to determine whether foliar application of β-sitosterol, a naturally occurring plant metabolite, may promote heat tolerance by suppressing heat-induced leaf senescence as indicated by the maintenance of healthy turf quality (TQ), and Chl and membrane stability; and to determine its roles in regulating antioxidant metabolism in creeping bentgrass (Agrostis stolonifera). ‘Penncross’ plants were exposed to heat stress (35/30 °C day/night) optimal temperature conditions (nonstressed control, 22/17 °C day/night) for a duration of 28 days in environment-controlled growth chambers. Plants were foliar-treated with β-sitosterol (400 µM) or water only (untreated control) before heat stress, and at 7-day intervals through 28 days of heat stress. Plants treated with β-sitosterol had significantly greater TQ and Chl content, and significantly less electrolyte leakage (EL) than untreated controls at 21 and 28 days of heat stress. Application of β-sitosterol reduced malondialdehyde (MDA) content significantly at 21 and 28 days of heat stress, and promoted the activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX) from 14 through 28 days of heat stress. β-Sitosterol effectively improved heat tolerance through suppression of leaf senescence in creeping bentgrass exposed to heat stress in association with the alleviation of membrane lipid peroxidation and activation of the enzymatic antioxidant system.


Agronomy ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2567
Author(s):  
Mino Sportelli ◽  
Marco Fontanelli ◽  
Michel Pirchio ◽  
Christian Frasconi ◽  
Michele Raffaelli ◽  
...  

Tall fescue (Schedonorus arundinaceus (Schreb.) Dumort.) is often managed with a cutting height ranging from 70 to 100 mm in ornamental lawns. Some autonomous mowers have been specifically designed to maintain mowing height in the same range. Generally, autonomous mowers operate by following random trajectories, and substantial overlapping is needed to obtain full coverage of the working area. In the case of tall grass, this may cause lodging of grass plants, which in turn may reduce turf quality. The introduction of a navigation system based on systematic trajectories has the potential to improve the performances of autonomous mowers with respect to machine efficiency and turf quality. With the aim of determining the effects of reduced mowing frequency and systematic navigation systems on turf quality and mower performances in terms of working time, energy consumption and overlapping, the performances of two autonomous mowers working with random and systematic trajectories were tested on a mature tall fescue lawn at 90 mm cutting height. The working efficiency was approximately 80% for the systematic trajectories and approximately 35% for the random trajectories; this was mainly due to the lower overlapping associated with systematic trajectories. Turf quality was slightly higher for the mower working systematically (a score of 8 using a 1–9 score with 1 = poor, 6 = acceptable and 9 = best) compared to the one working randomly (quality of 7 and 6 on a 1–9 scale with 1 = poor and 9 = best). No appreciable lodging was observed in either case. For tall, managed lawns, systematic trajectories may improve autonomous mowers’ overall performances.


Plants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2486
Author(s):  
Krishni Fernando ◽  
Priyanka Reddy ◽  
Simone Vassiliadis ◽  
German C. Spangenberg ◽  
Simone J. Rochfort ◽  
...  

Asexual Epichloë sp. endophytes in association with pasture grasses produce agronomically important alkaloids (e.g., lolitrem B, epoxy-janthitrems, ergovaline, peramine, and lolines) that exhibit toxicity to grazing mammals and/or insect pests. Novel strains are primarily characterised for the presence of these compounds to ensure they are beneficial in an agronomical setting. Previous work identified endophyte strains that exhibit enhanced antifungal activity, which have the potential to improve pasture and turf quality as well as animal welfare through phytopathogen disease control. The contribution of endophyte-derived alkaloids to improving pasture and turf grass disease resistance has not been closely examined. To assess antifungal bioactivity, nine Epichloë related compounds, namely peramine hemisulfate, n-formylloline-d3, n-acetylloline hydrochloride, lolitrem B, janthitrem A, paxilline, terpendole E, terpendole C, and ergovaline, and four Claviceps purpurea ergot alkaloids, namely ergotamine, ergocornine, ergocryptine, and ergotaminine, were tested at concentrations higher than observed in planta in glasshouse and field settings using in vitro agar well diffusion assays against three common pasture and turf phytopathogens, namely Ceratobasidium sp., Drechslera sp., and Fusarium sp. Visual characterisation of bioactivity using pathogen growth area, mycelial density, and direction of growth indicated no inhibition of pathogen growth. This was confirmed by statistical analysis. The compounds responsible for antifungal bioactivity of Epichloë endophytes hence remain unknown and require further investigation.


2021 ◽  
pp. 1-24
Author(s):  
Zhikui Hao ◽  
Muthukumar Bagavathiannan ◽  
Ying Li ◽  
Mingnan Qu ◽  
Zhiyong Wang ◽  
...  

Abstract Wood vinegar, a product of pyrolysis, can induce phytotoxicity on plants when applied at an adequate rate and concentration. The objective of this research was to investigate wood vinegar obtained from the pyrolysis of apple tree branches for weed control in dormant zoysiagrass. In environment-controlled growth chambers, white clover visual injury and shoot mass reduction compared to the nontreated control were evaluated after wood vinegar application at 1000, 2000, or 4000 L ha-1 under 10 or 30 C temperature conditions. Averaged across rates, wood vinegar rapidly desiccated white clover and caused 83 and 71% visual injury at 10 and 30 C, respectively, at 1 d after treatment (DAT). Averaged across temperatures, wood vinegar at 1000, 2000, and 4000 L ha-1 reduced white clover shoot mass by 56, 81, and 98% from the nontreated control at 10 DAT, respectively. In field experiments, weed control increased as wood vinegar rates increased from 1000 to 5000 L ha-1 in dormant zoysiagrass. The effective application dose of wood vinegar required to provide 90% control (ED90) of annual fleabane, Persian speedwell, and white clover was determined to be 2450, 2300, and 4020 L ha-1, respectively, at 2 weeks after treatment. Turf quality did not differ among the wood vinegar treatments and the nontreated control when zoysiagrass completely recovered from dormancy. Overall, results illustrate that wood vinegar resulting from the pyrolysis of apple tree branches can be used as a nonselective herbicide in dormant turfgrass, offering a new non-synthetic herbicide option for weed control in managed turf.


2021 ◽  
Vol 16 (3) ◽  
Author(s):  
Sukru Sezgi Ozkan ◽  
Behcet Kir

The sustainability of warm-season turfgrass species in winter dormancy is a major concern in Mediterranean ecology. The concept of overseed a lawn has been still new for many developing countries such as Turkey as part of a regular maintenance. Therefore, a 2-year study was conducted at the experimental fields of Ege University, Izmir/Turkey during 2014-2016 years to compare the effects of four different overseeding times (September 15, September 30, October 15 and October 30) on four warm season turfgrass species (Cynodon dactylon cv. SR9554, Cynodon dactylon × Cynodon transvaalensis cv. Tifway-419, Paspalum vaginatum cv. Sea Spray and Zoysia japonica cv. Zenith) by measuring visual turf quality (1-9 score) and some related characteristics as texture (mm), cover (1-9 score), weed infestation (1-9 score) and colour (1-9 score). ‘50% cv. Troya+50% cv. Esquire’ perennial ryegrass (Lolium perenne L.) mixture was used for overseeding in trial. According to results, visual turf quality performance of 6.0 scores and above were obtained from all treatments. We concluded that October 15 should be most suitable time for overseeding applications. Additionally, L. perenne L. can be practiced successfully in Mediterranean region in order to eliminate the concerns of warm-season turfgrasses in the winter dormancy period observed in cold temperatures. Highlights - No gaps were formed in plots and high coverage degrees were maintained during overseeding periods in all treatments. - Homogeneous spring transition was occurred from Lolium perenne L. to warm-season turfgrass species in all overseeding times. - Visual turf quality performance of 6.0 scores and above which is acceptable level were obtained from all overseeding times. - Better results were obtained from overseeding applications on Paspalum vaginatum and Cynodon dactylon × Cynodon transvaalensis. - The different results among the warm-season turfgrass species can provide effective information for future research studies.


2021 ◽  
pp. 1-9
Author(s):  
Travis Wayne Shaddox ◽  
Joseph Bryan Unruh

Numerous nitrogen (N) sources are used in turfgrass management and vary from soluble to slow-release. Determining the least expensive N source can be confusing for consumers. Price per ton and price per pound N are common price comparison methods. An improved approach could use longevity of the N source to balance the price. The objective of this study was to determine the longevity of turfgrass response to N sources and to determine the cost to achieve such responses. This study was conducted in Ft. Lauderdale and Jay, FL, from 1 Jan. to 31 Dec. 2018 on ‘Riley’s Super Sport’ (Celebration®) bermudagrass (Cynodon dactylon). Treatments included nontreated turfgrass, urea, ammonium sulfate, stabilized urea, methylene urea, ureaformaldehyde, two natural organics, sulfur-coated urea, and two polymer-coated urea fertilizers. Treatments were arranged in a split-plot design with N sources as whole plots and N rate (N applied at 49 and 98 kg·ha−1 every 4 months) as subplots. Turf quality was recorded on a scale of 1 to 9, where 1 = dead/brown turf and quality, 6 = minimal acceptable, and 9 = optimal healthy/green turf. Turf quality ratings were recorded weekly and used to determine response longevity (days quality ≥6.0) and area under the turfgrass response curve (AUTRC). Urea resulted in response longevity greater than or equal to other N sources during each season except when applied at 98 kg·ha−1 of N during the fall fertilizer cycle in Jay. Natural organics were ≈6-fold more expensive than urea in Jay and Ft. Lauderdale using turfgrass response longevity and AUTRC. Urea and sulfur-coated urea were the least expensive soluble and slow-release N source, respectively, using dollars per pound N, dollars per acre per day, and dollars per acre per quality-day during each fertilizer cycle and annual average in Jay and Ft. Lauderdale. No evidence was found supporting the use of turfgrass response as a more effective method of determining fertilizer cost than dollars per pound N.


Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1128
Author(s):  
Cristina Pornaro ◽  
Michele Dal Maso ◽  
Stefano Macolino

Kentucky bluegrass (Poa pratensis L.) is one of the most popular cool-season turfgrass species. However, little is known about the effects of N supply on its resistance to drought stress. The objective of this study was to assess the effects of acute drought followed by a recovery period on four Kentucky bluegrass cultivars (‘Barduke’, ‘Brooklawn’, ‘NuBlue Plus’ and ‘Marauder’) and one tall fescue (‘Rhambler SRP’) under two different nitrogen fertilisation rates (100 or 200 kg N ha−1 yr−1). The study was conducted over two years in a rain-out structure to control water input in spring and summer. The cultivars were subjected to a drought stress phase (absence of irrigation) followed by a recovery phase (weekly irrigation with an intake of 80% of ET). The green cover percentage, visual quality, NDVI, and soil moisture were measured weekly. We found that Kentucky bluegrass maintains sufficient turf quality for 2 weeks without irrigation. During the first year of the experiment, slight differences were observed among the Kentucky bluegrass cultivars, with ‘Marauder’ showing a 15% of green turf cover less than ‘Brooklawn’ after 6 weeks of acute drought, while in the second year, ‘NuBlue Plus’ displayed higher green turf cover and NDVI than the other cultivars. Nitrogen treatment had limited influence on the performances of the cultivars, ‘Marauder’ being the only one benefitting from the higher rate of applications.


2020 ◽  
Vol 30 (6) ◽  
pp. 709-718
Author(s):  
Paweł Petelewicz ◽  
Paweł M. Orliński ◽  
Marco Schiavon ◽  
Manuel Mundo-Ocampo ◽  
J. Ole Becker ◽  
...  

Golf courses in coastal regions of northern California are often faced with severe injury caused by pacific shoot-gall nematodes (Anguina pacificae) on their annual bluegrass (Poa annua) host in putting greens. For years, fenamiphos was used for mitigating disease outbreaks until its registration was withdrawn in 2008. An alternative product containing azadirachtin was intended for nematode suppression. Still, it required repeated applications throughout the year with questionable efficacy, making attempts to lessen the impact of the pathogen costly. This study evaluated fluopyram as a novel nematicide for control of pacific shoot-gall disease. Various application frequencies and rates were tested at several golf courses affected by the nematode. Results revealed that fluopyram applied once at 0.22 lb/acre reduced the number of new shoot-galls and improved annual bluegrass appearance for several months. Increased rates and application frequency occasionally improved the efficacy further. Although the visual quality of turf treated with this plant protection compound was tremendously enhanced, and the number of new shoot-galls was reduced, rarely a significant effect was observed on the population density of several soil-dwelling plant-parasitic nematodes, including pacific shoot-gall nematode. It is hypothesized that fluopyram did not move significantly past the thatch layer and into the soil. However, it effectively reduced the ability of pacific shoot-gall nematode juveniles to induce new shoot galls. Due to its long half-life, it likely protected against both new nematode infections and dissemination of pacific shoot-gall nematode when the shoot-galls decomposed.


2020 ◽  
Vol 21 (11) ◽  
Author(s):  
Rahayu Rahayu ◽  
Fatimah Suwardjo ◽  
Ji Bae Eun ◽  
Geun Mo Yang ◽  
Soo Choi Joon

Abstract. Rahayu, Fatimah, Bae EJ, Mo YG, Choi JS. 2020. Genetic diversity and morphological characteristics of native seashore paspalum in Indonesia. Biodiversitas 21: 4981-4989. Seashore paspalum (Paspalum vaginatum) is a warm-season turfgrass indigenous to tropical and coastal areas worldwide. The objectives of this study were to measure the genetic diversity and genetic variation of Indonesian seashore paspalum germplasm. Three turf quality, six morphological characters, and ten SSR (microsatellite) markers were used to assess genetic relationships and genetic variation among 22 germplasm resources from Indonesia and one commercial variety (Salam) from United States of America. The results showed significant variation for five morphological characters among 23 tested seashore paspalum accessions. The cluster analysis of morphological characters of 23 seashore paspalum accessions using 0,6 cut off divided into three morphological types: tall high-density, intermediate, and dwarf low-density ecotype. The genetic variation revealed 22 alleles with average number of alleles per locus was 2 and polymorphism information content (PIC) values average was 0.33. The microsatellite marker cluster analysis showed that 23 seashore paspalum accessions were grouped into two major groups, with a genetic similarity coefficient was 0,72. The low level of genetic diversity occurred among Indonesia natural grass germplasm and the genetic distance was relatively low between Indonesian germplasm and Salam variety. The genetic diversity and morphological characteristics will be useful for further study and utilization of Indonesian seashore paspalum germplasm.


2020 ◽  
Author(s):  
sun xiaoyang ◽  
Chen Yajun

Abstract Background: Kentucky bluegrass (Poa pratensis L) is one of the most popular cool-season turfgrass worldwide, but the mechanisms of this species in response to low nitrogen (N) still remain unclear. In this study, we characterized two cultivars ‘Bluemoon’ and ‘Balin’ distinctly in morphological, chromosomal, physiological and molecular attributes to N supply.Results: Bluemoon was more tolerant to low N than Balin by exhibiting higher turf quality (TQ), photosynthetic ability, activities of N reductases and synthetases and nitrogen use efficiency (NUE). Gene expression profiling showed that there were 968 and 336 differentially expressed genes (DEGs) after eliminating genetic background differences in Bluemoon and Balin respectively during low N stress, and these DEGs highly enriched in ‘Nitrogen metabolism’, ‘Pyruvate metabolism’ and ‘Carbon fixation in photosynthetic’ pathways. The identified genes related to carbon (C) metabolism highly expressed in Bluemoon, which could generate more NADPH then result in more N reduction comparing with Balin. Moreover, R2R3-MYB transcription factors were predicted to bind the promoter of GS to enhance the efficiency of GS/GOGAT cycle.Conclusion: These results could be crucial molecular regulations for improving the tolerance to low N and NUE in Bluemoon. The climate and geography in origins may shape the N assimilation patterns in Kentucky bluegrass via long-term domestication. Taken together, the findings help elucidate the low N tolerance mechanisms in Kentucky bluegrass and would be valuable for the genetic improvement of NUE aiming to promote low-input turfgrass management.


Sign in / Sign up

Export Citation Format

Share Document