Foxtail millet WRKY genes and drought stress

2016 ◽  
Vol 155 (5) ◽  
pp. 777-790 ◽  
Author(s):  
L. ZHANG ◽  
H. SHU ◽  
A. Y. ZHANG ◽  
B. L. LIU ◽  
G. F. XING ◽  
...  

SUMMARYFoxtail millet (Setaria italica (L.) P. Beauv.) is a naturally stress-tolerant plant, a major reserve crop and a model for panicoid grasses. The recent completion of the S. italica genome facilitates identification and characterization of WRKY transcription factor family proteins that are important regulators of major plant processes, including growth, development and stress response. The present study identified 103 WRKY transcription factor-encoding genes in the S. italica genome. The genes were named SiWRKY1–SiWRKY103 according to their order on the chromosomes. A comprehensive expression analysis of SiWRKY genes among four different tissues was performed using publicly available RNA sequencing data. Eighty-four SiWRKY genes were more highly expressed in root tissue than in other tissues and nine genes were only expressed in roots. Additionally, real-time quantitative polymerase chain reaction was performed to comprehensively analyse the expression of all SiWRKY genes in response to dehydration. Results indicated that most SiWRKY genes (over 0.8) were up-regulated by drought stress. In conclusion, genome-wide identification and expression profiling of SiWRKY genes provided a set of candidates for cloning and functional analyses in plants’ response to drought stress.

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Teame Gereziher MEHARI ◽  
Yanchao XU ◽  
Richard Odongo MAGWANGA ◽  
Muhammad Jawad UMER ◽  
Joy Nyangasi KIRUNGU ◽  
...  

Abstract Background Cotton is an important commercial crop for being a valuable source of natural fiber. Its production has undergone a sharp decline because of abiotic stresses, etc. Drought is one of the major abiotic stress causing significant yield losses in cotton. However, plants have evolved self-defense mechanisms to cope abiotic factors like drought, salt, cold, etc. The evolution of stress responsive transcription factors such as the trihelix, a nodule-inception-like protein (NLP), and the late embryogenesis abundant proteins have shown positive response in the resistance improvement to several abiotic stresses. Results Genome wide identification and characterization of the effects of Light-Harvesting Chloro a/b binding (LHC) genes were carried out in cotton under drought stress conditions. A hundred and nine proteins encoded by the LHC genes were found in the cotton genome, with 55, 27, and 27 genes found to be distributed in Gossypium hirsutum, G. arboreum, and G. raimondii, respectively. The proteins encoded by the genes were unevenly distributed on various chromosomes. The Ka/Ks (Non-synonymous substitution rate/Synonymous substitution rate) values were less than one, an indication of negative selection of the gene family. Differential expressions of genes showed that majority of the genes are being highly upregulated in the roots as compared with leaves and stem tissues. Most genes were found to be highly expressed in MR-85, a relative drought tolerant germplasm. Conclusion The results provide proofs of the possible role of the LHC genes in improving drought stress tolerance, and can be explored by cotton breeders in releasing a more drought tolerant cotton varieties.


2019 ◽  
Author(s):  
Olivera Grujic ◽  
Tanya N. Phung ◽  
Soo Bin Kwon ◽  
Adriana Arneson ◽  
Yuju Lee ◽  
...  

AbstractAnnotations of evolutionarily constraint provide important information for variant prioritization. Genome-wide maps of epigenomic marks and transcription factor binding provide complementary information for interpreting a subset of such prioritized variants. Here we developed the Constrained Non-Exonic Predictor (CNEP) to quantify the evidence of each base in the human genome being in a constrained non-exonic element from over 60,000 epigenomic and transcription factor binding features. We find that the CNEP score outperforms baseline and related existing scores at predicting constrained non-exonic bases from such data. However, a subset of such bases are still not well predicted by CNEP. We developed a complementary Conservation Signature Score by CNEP (CSS-CNEP) using conservation state and constrained element annotations that is predictive of those bases. Using human genetic variation, regulatory sequence motifs, mouse epigenomic data, and retrospectively considered additional human data we further characterize the nature of constrained non-exonic bases with low CNEP scores.


2002 ◽  
Vol 22 (8) ◽  
pp. 2642-2649 ◽  
Author(s):  
Stéphane Le Crom ◽  
Frédéric Devaux ◽  
Philippe Marc ◽  
Xiaoting Zhang ◽  
W. Scott Moye-Rowley ◽  
...  

ABSTRACT Yrr1p is a recently described Zn2Cys6 transcription factor involved in the pleiotropic drug resistance (PDR) phenomenon. It is controlled in a Pdr1p-dependent manner and is autoregulated. We describe here a new genome-wide approach to characterization of the set of genes directly regulated by Yrr1p. We found that the time-course production of an artificial chimera protein containing the DNA-binding domain of Yrr1p activated the 15 genes that are also up-regulated by a gain-of-function mutant of Yrr1p. Gel mobility shift assays showed that the promoters of the genes AZR1, FLR1, SNG1, YLL056C, YLR346C, and YPL088W interacted with Yrr1p. The putative consensus Yrr1p binding site deduced from these experiments, (T/A)CCG(C/T)(G/T)(G/T)(A/T)(A/T), is strikingly similar to the PDR element binding site sequence recognized by Pdr1p and Pdr3p. The minor differences between these sequences are consistent with Yrr1p and Pdr1p and Pdr3p having different sets of target genes. According to these data, some target genes are directly regulated by Pdr1p and Pdr3p or by Yrr1p, whereas some genes are indirectly regulated by the activation of Yrr1p. Some genes, such as YOR1, SNQ2, and FLR1, are clearly directly controlled by both classes of transcription factor, suggesting an important role for the corresponding membrane proteins.


Sign in / Sign up

Export Citation Format

Share Document