transgenic arabidopsis
Recently Published Documents


TOTAL DOCUMENTS

1030
(FIVE YEARS 282)

H-INDEX

69
(FIVE YEARS 10)

2022 ◽  
Vol 295 ◽  
pp. 110848
Author(s):  
Lei Zhu ◽  
Shengli Li ◽  
Mengzhen Ouyang ◽  
Luming Yang ◽  
Shouru Sun ◽  
...  

Forests ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 52
Author(s):  
Yan Li ◽  
Caihong Quan ◽  
Shuguang Yang ◽  
Shaohua Wu ◽  
Minjing Shi ◽  
...  

ICE (inducer of CBF expression) is a positive regulator of cold signaling pathway in plants. Identification of ICE transcription factors is important for the sustainable development of the natural rubber planting industry in nontraditional regions where sudden cold waves often occur. In this study, five ICE genes were isolated from genome of rubber tree (Hevea brasiliensis Muell. Arg.) for analysing tolerance to cold stress. They shared an ICE-specific region in the highly conserved bHLH-ZIP domain and were localized in the nucleus. The HbICEs were different in transcript abundance and expression patterns in response to cold and drought stresses and among different rubber tree clones. Generally, the expression level of HbICEs was significantly higher in the cold-tolerant rubber tree clones than that in the cold-sensitive rubber tree clones. Overexpression of HbICE1, HbICE2, and HbICE4 significantly enhanced the cold tolerance of transgenic Arabidopsis and tobacco, which showed a significant increase in chlorophyll content and decrease in relative water content and conductivity at the early stage of cold stress in comparison with wild-type plants. Furthermore, overexpression of HbICE2 and HbICE4, but also HbICE1 enhanced drought tolerance in transgenic Arabidopsis. The cold tolerance of rubber tree clones is positively controlled by the expression level of HbICE1, HbICE2, and HbICE4.


Genes ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 98
Author(s):  
Youchao Xin ◽  
Donghao Wang ◽  
Shengmei Han ◽  
Suxia Li ◽  
Na Gong ◽  
...  

Chitinase is a hydrolase that uses chitin as a substrate. It plays an important role in plant resistance to fungal pathogens by degrading chitin. Here, we conducted bioinformatics analysis and transcriptome data analysis of the mulberry (Morus notabilis) chitinase gene family to determine its role in the resistance to Botrytis cinerea. A total of 26 chitinase genes were identified, belonging to the GH18 and GH19 families. Among them, six chitinase genes were differentially expressed under the infection of B. cinerea. MnChi18, which significantly responded to B. cinerea, was heterologously expressed in Arabidopsis (Arabidopsis thaliana). The resistance of MnChi18 transgenic Arabidopsis to B. cinerea was significantly enhanced, and after inoculation with B. cinerea, the activity of catalase (CAT) increased and the content of malondialdehyde (MDA) decreased. This shows that overexpression of MnChi18 can protect cells from damage. In addition, our study also indicated that MnChi18 may be involved in B. cinerea resistance through other resistance-related genes. This study provides an important basis for further understanding the function of mulberry chitinase.


Genes ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 68
Author(s):  
Renwei Huang ◽  
Shunzhao Sui ◽  
Huamin Liu ◽  
Mingyang Li ◽  
Daofeng Liu

WRKY transcription factors play critical roles in the physiological processes of plants. Although the roles of WRKYs have been characterized in some model plants, their roles in woody plants, especially wintersweet (Chimonanthus praecox), are largely unclear. In this study, a wintersweet WRKY gene named CpWRKY75 belonging to group IIc was isolated and its characteristics were identified. CpWRKY75 is a nucleus-localized protein, and exhibited no transcriptional activation activity in yeast. CpWRKY75 was highly expressed in flowers at different bloom stages. Ectopic expression of CpWRKY75 significantly promoted the flowering time of transgenic Arabidopsis (Arabidopsis thaliana), as determined by the rosette leaf number and first flower open time. The expression levels of flowering-related genes were quantified by qRT-PCR, and the results suggested that CpWRKY75 had obvious influence on the expression level of MICRORNA156C (MIR156C), SQUAMOSA PROMOTER BINDING PROTEIN-LIKE3 (SPL3) and SQUAMOSA PROMOTER BINDING PROTEIN-LIKE 9 (SPL9), FLOWERING LOCUS T (FT), LEAFY (LFY), SUPPRESSOR OF OVEREXPRESSION OF CO 1 (SOC1), APETALA1 (AP1), CAULIFLOWER (CAL), and FRUITFULL (FUL). These results suggest that CpWRKY75 might have a flowering time regulation function, and additionally provide a new gene resource for the genetic engineering of woody flowering plants.


2021 ◽  
Vol 22 (24) ◽  
pp. 13664
Author(s):  
Dan Li ◽  
Mingyuan Zhao ◽  
Jinshan Jia ◽  
Xiaoyan Yu ◽  
Lanyong Zhao ◽  
...  

Branch angle is a key shoot architecture trait that strongly influences the ornamental and economic value of garden plants. However, the mechanism underlying the control of branch angle, an important aspect of tree architecture, is far from clear in roses. In the present study, we isolated the RrLAZY1 gene from the stems of Rosa rugosa ‘Zilong wochi’. Sequence analysis showed that the encoded RrLAZY1 protein contained a conserved GΦL (A/T) IGT domain, which belongs to the IGT family. Quantitative real-time PCR (qRT-PCR) analyses revealed that RrLAZY1 was expressed in all tissues and that expression was highest in the stem. The RrLAZY1 protein was localized in the plasma membrane. Based on a yeast two-hybrid assay and bimolecular fluorescence complementation experiments, the RrLAZY1 protein was found to interact with auxin-related proteins RrIAA16. The over-expression of the RrLAZY1 gene displayed a smaller branch angle in transgenic Arabidopsis inflorescence and resulted in changes in the expression level of genes related to auxin polar transport and signal transduction pathways. This study represents the first systematic analysis of the LAZY1 gene family in R. rugosa. The results of this study will provide a theoretical basis for the improvement of rose plant types and molecular breeding and provide valuable information for studying the regulation mechanism of branch angle in other woody plants.


2021 ◽  
Vol 22 (24) ◽  
pp. 13502
Author(s):  
Yue Zhang ◽  
Zhen Zeng ◽  
Yubing Yong ◽  
Yingmin Lyu

In lily reproduction, the mechanism of formation of bulbs has been a hot topic. However, studies on stem bulblet formation are limited. Stem bulblets, formed in the leaf axils of under- and above-ground stems, provide lilies with a strong capacity for self-propagation. First, we showed that above-ground stem bulblets can be induced by spraying 100 mg/L 6-BA on the LA hybrid lily ‘Aladdin’, with reduced endogenous IAA and GA4 and a higher relative content of cytokinins. Then, expression patterns of three potential genes (two KNOTTED1-like homeobox (KNOX) and one partial BEL1-like homeobox (BELL)), during stem bulblet formation from our previous study, were determined by RT-qPCR, presenting a down-up trend in KNOXs and a rising tendency in BELL. The partial BELL gene was cloned by RACE from L. ‘Aladdin’ and denoted LaBEL1. Physical interactions of LaKNOX1-LaBEL1 and LaKNOX1-LaKNOX2 were confirmed by yeast two-hybrid and bimolecular fluorescence complementation assays. Furthermore, hormonal regulatory patterns of single LaKNOX1, LaKNOX2, LaBEL1, and their heterodimers, were revealed in transgenic Arabidopsis, suggesting that the massive mRNA accumulations of LaKNOX1, LaKNOX2 and LaBEL1 genes during stem bulblet formation could cause the dramatic relative increase of cytokinins and the decline of GAs and IAA. Taken together, a putative model was proposed that LaKNOX1 interacts with LaKNOX2 and LaBEL1 to regulate multiple phytohormones simultaneously for an appropriate hormonal homeostasis, which suggests their potential role in stem bulblet formation in L. ‘Aladdin’.


Sign in / Sign up

Export Citation Format

Share Document