A weak derivative approach to optimization of threshold parameters in a multicomponent maintenance system

2001 ◽  
Vol 38 (02) ◽  
pp. 386-406 ◽  
Author(s):  
Bernd Heidergott

We consider a multicomponent maintenance system controlled by an age replacement policy: when one of the components fails, it is immediately replaced; all components older than a threshold age θ are preventively replaced. Costs are associated with each maintenance action, such as replacement after failure or preventive replacement. We derive a weak derivative estimator for the derivative of the cost performance with respect to θ. The technique is quite general and can be applied to many other threshold optimization problems in maintenance. The estimator is easy to implement and considerably increases the efficiency of a Robbins-Monro type of stochastic approximation algorithm. The paper is self-contained in the sense that it includes a proof of the correctness of the weak derivative estimation algorithm.


2001 ◽  
Vol 38 (2) ◽  
pp. 386-406 ◽  
Author(s):  
Bernd Heidergott

We consider a multicomponent maintenance system controlled by an age replacement policy: when one of the components fails, it is immediately replaced; all components older than a threshold age θ are preventively replaced. Costs are associated with each maintenance action, such as replacement after failure or preventive replacement. We derive a weak derivative estimator for the derivative of the cost performance with respect to θ. The technique is quite general and can be applied to many other threshold optimization problems in maintenance. The estimator is easy to implement and considerably increases the efficiency of a Robbins-Monro type of stochastic approximation algorithm. The paper is self-contained in the sense that it includes a proof of the correctness of the weak derivative estimation algorithm.



Author(s):  
BERMAWI P. ISKANDAR ◽  
HIROAKI SANDOH

This study discusses an opportunity-based age replacement policy for a system which has a warranty period (0, S]. When the system fails at its age x≤S, a minimal repair is performed. If an opportunity occurs to the system at its age x for S<x<T, we take the opportunity with probability p to preventively replace the system, while we conduct a corrective replacement when it fails on (S, T). Finally if its age reaches T, we execute a preventive replacement. Under this replacement policy, the design variable is T. For the case where opportunities occur according to a Poisson process, a long-run average cost of this policy is formulated under a general failure time distribution. It is, then, shown that one of the sufficient conditions where a unique finite optimal T* exists is that the failure time distribution is IFR (Increasing Failure Rate). Numerical examples are also presented for the Weibull failure time distribution.



2015 ◽  
Vol 21 (3) ◽  
pp. 346-357 ◽  
Author(s):  
Zouheir Malki ◽  
Daoud Ait-Kadi ◽  
Mohamed-Salah Ouali

Purpose – The purpose of this paper is to investigate age replacement policies for two-component parallel system with stochastic dependence. The stochastic dependence considered, is modeled by a one-sided domino effect. The failure of component 1 at instant t may induce the failure of component 2 at instant t+τ with probability p 1→2. The time delay τ is a random variable with known probability density function h p 1→2 (.). The system is considered in a failed state when both components are failed. The proposed replacement policies suggest to replace the system upon failure or at age T whichever occurs first. Design/methodology/approach – In the first policy, costs and durations associated with maintenance activities are supposed to be constant. In the second replacement policy, the preventive replacement cost depends on the system’s state and age. The expected cost per unit of time over an infinite span is derived and numerical examples are presented. Findings – In this paper and especially in the second policy, the authors find that the authors can get a more economical policy if the authors consider that the preventive replacement cost is not constant but depends on T. Originality/value – In this paper, the authors take into account of the stochastic dependence between system components. This dependence affects the global reliability of the system and replacement’s periodicity. It can be used to measure the performance of the system et introduced into design phase of the system.



Author(s):  
TOSHIO NAKAGAWA ◽  
XUFENG ZHAO ◽  
WON YOUNG YUN

It is well-known in the standard age replacement policy that a finite preventive replacement time does not exist when the failure time is exponential and the optimal preventive replacement time is nonrandom. It is shown that when the failure time is exponential, a finite time exists by introducing the shortage and excess costs. In addition, the random age replacement is proposed and similar discussions are made. Furthermore, the periodic and random inspection policies are taken up, and their optimal policies are shown to correspond theoretically to those of the age replacement ones. It is shown finally that when the random inspection cost is the half of the periodic one, two expected costs are almost the same.



Author(s):  
Xufeng Zhao ◽  
Cunhua Qian ◽  
Toshio Nakagawa

Preventive replacement policy conducted at a routine time [Formula: see text] has been surveyed extensively in literatures. Another two random replacement times [Formula: see text] and [Formula: see text] for time [Formula: see text] are jointly considered in this paper. We formulate the models of replacement first, replacement last and replacement middle, which are based on the respective assumptions of whichever occurs first, whichever occurs last and whichever occurs middle. Next, we modify replacement first and replacement last by using whichever occurs first and last jointly. Furthermore, we give the model of replacement overtime when the assumptions of whichever occurs first, whichever occurs last and replacing the unit over time [Formula: see text] are simultaneously considered. Comparisons among these replacement models are made to find which policy is more economical than the other.



2013 ◽  
Vol 35 ◽  
pp. 1-9 ◽  
Author(s):  
Pei-Ing Wu ◽  
Chai Tzu Chen ◽  
Je-Liang Liou


2021 ◽  
Vol 2 (3) ◽  
pp. 1-24
Author(s):  
Chih-Kai Huang ◽  
Shan-Hsiang Shen

The next-generation 5G cellular networks are designed to support the internet of things (IoT) networks; network components and services are virtualized and run either in virtual machines (VMs) or containers. Moreover, edge clouds (which are closer to end users) are leveraged to reduce end-to-end latency especially for some IoT applications, which require short response time. However, the computational resources are limited in edge clouds. To minimize overall service latency, it is crucial to determine carefully which services should be provided in edge clouds and serve more mobile or IoT devices locally. In this article, we propose a novel service cache framework called S-Cache , which automatically caches popular services in edge clouds. In addition, we design a new cache replacement policy to maximize the cache hit rates. Our evaluations use real log files from Google to form two datasets to evaluate the performance. The proposed cache replacement policy is compared with other policies such as greedy-dual-size-frequency (GDSF) and least-frequently-used (LFU). The experimental results show that the cache hit rates are improved by 39% on average, and the average latency of our cache replacement policy decreases 41% and 38% on average in these two datasets. This indicates that our approach is superior to other existing cache policies and is more suitable in multi-access edge computing environments. In the implementation, S-Cache relies on OpenStack to clone services to edge clouds and direct the network traffic. We also evaluate the cost of cloning the service to an edge cloud. The cloning cost of various real applications is studied by experiments under the presented framework and different environments.



2021 ◽  
Vol 58 (2) ◽  
pp. 289-313
Author(s):  
Ruhul Ali Khan ◽  
Dhrubasish Bhattacharyya ◽  
Murari Mitra

AbstractThe performance and effectiveness of an age replacement policy can be assessed by its mean time to failure (MTTF) function. We develop shock model theory in different scenarios for classes of life distributions based on the MTTF function where the probabilities $\bar{P}_k$ of surviving the first k shocks are assumed to have discrete DMTTF, IMTTF and IDMTTF properties. The cumulative damage model of A-Hameed and Proschan [1] is studied in this context and analogous results are established. Weak convergence and moment convergence issues within the IDMTTF class of life distributions are explored. The preservation of the IDMTTF property under some basic reliability operations is also investigated. Finally we show that the intersection of IDMRL and IDMTTF classes contains the BFR family and establish results outlining the positions of various non-monotonic ageing classes in the hierarchy.



Coatings ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 734
Author(s):  
Pablo Fernández-Lucio ◽  
Octavio Pereira Neto ◽  
Gaizka Gómez-Escudero ◽  
Francisco Javier Amigo Fuertes ◽  
Asier Fernández Valdivielso ◽  
...  

Productivity in the manufacture of aircrafts components, especially engine components, must increase along with more sustainable conditions. Regarding machining, a solution is proposed to increase the cutting speed, but engines are made with very difficult-to-cut alloys. In this work, a comparison between two cutting tool materials, namely (a) cemented carbide and (b) SiAlON ceramics, for milling rough operations in Inconel® 718 in aged condition was carried out. Furthermore, both the influence of coatings in cemented carbide milling tools and the cutting speed in the ceramic tools were analysed. All tools were tested until the end of their useful life. The cost performance ratio was used to compare the productivity of the tested tools. Despite the results showing higher durability of the coated carbide tool, the ceramic tools presented a better behavior in terms of productivity at higher speed. Therefore, ceramic tools should be used for higher productivity demands, while coated carbide tools for low speed-high volume material removal.



2022 ◽  
Vol 0 (0) ◽  
Author(s):  
Fouzia Amir ◽  
Ali Farajzadeh ◽  
Jehad Alzabut

Abstract Multiobjective optimization is the optimization with several conflicting objective functions. However, it is generally tough to find an optimal solution that satisfies all objectives from a mathematical frame of reference. The main objective of this article is to present an improved proximal method involving quasi-distance for constrained multiobjective optimization problems under the locally Lipschitz condition of the cost function. An instigation to study the proximal method with quasi distances is due to its widespread applications of the quasi distances in computer theory. To study the convergence result, Fritz John’s necessary optimality condition for weak Pareto solution is used. The suitable conditions to guarantee that the cluster points of the generated sequences are Pareto–Clarke critical points are provided.



Sign in / Sign up

Export Citation Format

Share Document