scholarly journals How did we get here?

2014 ◽  
Vol 51 (A) ◽  
pp. 63-72
Author(s):  
Kais Hamza ◽  
Fima C. Klebaner

Looking at a large branching population we determine along which path the population that started at 1 at time 0 ended up in B at time N. The result describes the density process, that is, population numbers divided by the initial number K (where K is assumed to be large). The model considered is that of a Galton-Watson process. It is found that in some cases population paths exhibit the strange feature that population numbers go down and then increase. This phenomenon requires further investigation. The technique uses large deviations, and the rate function based on Cramer's theorem is given. It also involves analysis of existence of solutions of a certain algebraic equation.

2014 ◽  
Vol 51 (A) ◽  
pp. 63-72 ◽  
Author(s):  
Kais Hamza ◽  
Fima C. Klebaner

Looking at a large branching population we determine along which path the population that started at 1 at time 0 ended up inBat timeN. The result describes the density process, that is, population numbers divided by the initial numberK(whereKis assumed to be large). The model considered is that of a Galton-Watson process. It is found that in some cases population paths exhibit the strange feature that population numbers go down and then increase. This phenomenon requires further investigation. The technique uses large deviations, and the rate function based on Cramer's theorem is given. It also involves analysis of existence of solutions of a certain algebraic equation.


2021 ◽  
Vol 183 (3) ◽  
Author(s):  
Bart van Ginkel ◽  
Bart van Gisbergen ◽  
Frank Redig

AbstractWe study a model of active particles that perform a simple random walk and on top of that have a preferred direction determined by an internal state which is modelled by a stationary Markov process. First we calculate the limiting diffusion coefficient. Then we show that the ‘active part’ of the diffusion coefficient is in some sense maximal for reversible state processes. Further, we obtain a large deviations principle for the active particle in terms of the large deviations rate function of the empirical process corresponding to the state process. Again we show that the rate function and free energy function are (pointwise) optimal for reversible state processes. Finally, we show that in the case with two states, the Fourier–Laplace transform of the distribution, the moment generating function and the free energy function can be computed explicitly. Along the way we provide several examples.


2003 ◽  
Vol 10 (2) ◽  
pp. 381-399
Author(s):  
A. Yu. Veretennikov

Abstract We establish sufficient conditions under which the rate function for the Euler approximation scheme for a solution of a one-dimensional stochastic differential equation on the torus is close to that for an exact solution of this equation.


2018 ◽  
Vol 50 (3) ◽  
pp. 983-1004 ◽  
Author(s):  
Tanguy Cabana ◽  
Jonathan D. Touboul

Abstract We continue the analysis of large deviations for randomly connected neural networks used as models of the brain. The originality of the model relies on the fact that the directed impact of one particle onto another depends on the state of both particles, and they have random Gaussian amplitude with mean and variance scaling as the inverse of the network size. Similarly to the spatially extended case (see Cabana and Touboul (2018)), we show that under sufficient regularity assumptions, the empirical measure satisfies a large deviations principle with a good rate function achieving its minimum at a unique probability measure, implying, in particular, its convergence in both averaged and quenched cases, as well as a propagation of a chaos property (in the averaged case only). The class of model we consider notably includes a stochastic version of the Kuramoto model with random connections.


Author(s):  
Rami Atar ◽  
Amarjit Budhiraja ◽  
Paul Dupuis ◽  
Ruoyu Wu

For the M/M/1+M model at the law-of-large-numbers scale, the long-run reneging count per unit time does not depend on the individual (i.e., per customer) reneging rate. This paradoxical statement has a simple proof. Less obvious is a large deviations analogue of this fact, stated as follows: the decay rate of the probability that the long-run reneging count per unit time is atypically large or atypically small does not depend on the individual reneging rate. In this paper, the sample path large deviations principle for the model is proved and the rate function is computed. Next, large time asymptotics for the reneging rate are studied for the case when the arrival rate exceeds the service rate. The key ingredient is a calculus of variations analysis of the variational problem associated with atypical reneging. A characterization of the aforementioned decay rate, given explicitly in terms of the arrival and service rate parameters of the model, is provided yielding a precise mathematical description of this paradoxical behavior.


Author(s):  
QIU-YUE LI ◽  
YAN-XIA REN

We derive a large deviation principle for occupation time of super α-stable process in ℝd with d > 2α. The decay of tail probabilities is shown to be exponential and the rate function is characterized. Our result can be considered as a counterpart of Lee's work on large deviations for occupation times of super-Brownian motion in ℝd for dimension d > 4 (see Ref. 10).


2000 ◽  
Vol 128 (3) ◽  
pp. 561-569 ◽  
Author(s):  
NEIL O'CONNELL

Sanov's Theorem states that the sequence of empirical measures associated with a sequence of i.d.d. random variables satisfies the large deviation principle (LDP) in the weak topology with rate function given by a relative entropy. We present a derivative which allows one to establish LDPs for symmetric functions of many i.d.d. random variables under the condition that (i) a law of large numbers holds whatever the underlying distribution and (ii) the functions are uniformly Lipschitz. The heuristic (of the title) is that the LDP follows from (i) provided the functions are ‘sufficiently smooth’. As an application, we obtain large deviations results for the stochastic bin-packing problem.


1999 ◽  
Vol 36 (3) ◽  
pp. 733-746 ◽  
Author(s):  
Harri Nyrhinen

Let {Yn | n=1,2,…} be a stochastic process and M a positive real number. Define the time of ruin by T = inf{n | Yn > M} (T = +∞ if Yn ≤ M for n=1,2,…). We are interested in the ruin probabilities for large M. Define the family of measures {PM | M > 0} by PM(B) = P(T/M ∊ B) for B ∊ ℬ (ℬ = Borel sets of ℝ). We prove that for a wide class of processes {Yn}, the family {PM} satisfies a large deviations principle. The rate function will correspond to the approximation P(T/M ≈ x) ≈ P(Y⌈xM⌉/M ≈ 1) for x > 0. We apply the result to a simulation problem.


2018 ◽  
Vol 50 (3) ◽  
pp. 944-982 ◽  
Author(s):  
Tanguy Cabana ◽  
Jonathan D. Touboul

Abstract In a series of two papers, we investigate the large deviations and asymptotic behavior of stochastic models of brain neural networks with random interaction coefficients. In this first paper, we take into account the spatial structure of the brain and consider first the presence of interaction delays that depend on the distance between cells and then the Gaussian random interaction amplitude with a mean and variance that depend on the position of the neurons and scale as the inverse of the network size. We show that the empirical measure satisfies a large deviations principle with a good rate function reaching its minimum at a unique spatially extended probability measure. This result implies an averaged convergence of the empirical measure and a propagation of chaos. The limit is characterized through a complex non-Markovian implicit equation in which the network interaction term is replaced by a nonlocal Gaussian process with a mean and covariance that depend on the statistics of the solution over the whole neural field.


Sign in / Sign up

Export Citation Format

Share Document