On Approximate Large Deviations for 1D Diffusion

2003 ◽  
Vol 10 (2) ◽  
pp. 381-399
Author(s):  
A. Yu. Veretennikov

Abstract We establish sufficient conditions under which the rate function for the Euler approximation scheme for a solution of a one-dimensional stochastic differential equation on the torus is close to that for an exact solution of this equation.

2020 ◽  
Vol 28 (3) ◽  
pp. 183-196
Author(s):  
Kouacou Tanoh ◽  
Modeste N’zi ◽  
Armel Fabrice Yodé

AbstractWe are interested in bounds on the large deviations probability and Berry–Esseen type inequalities for maximum likelihood estimator and Bayes estimator of the parameter appearing linearly in the drift of nonhomogeneous stochastic differential equation driven by fractional Brownian motion.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Wenli Zhu ◽  
Jiexiang Huang ◽  
Xinfeng Ruan ◽  
Zhao Zhao

This paper focuses on a class of stochastic differential equations with mixed delay based on Lyapunov stability theory, Itô formula, stochastic analysis, and inequality technique. A sufficient condition for existence and uniqueness of the adapted solution to such systems is established by employing fixed point theorem. Some sufficient conditions of exponential stability and corollaries for such systems are obtained by using Lyapunov function. By utilizing Doob’s martingale inequality and Borel-Cantelli lemma, it is shown that the exponentially stable in the mean square of such systems implies the almost surely exponentially stable. In particular, our theoretical results show that if stochastic differential equation is exponentially stable and the time delay is sufficiently small, then the corresponding stochastic differential equation with mixed delay will remain exponentially stable. Moreover, time delay upper limit is solved by using our theoretical results when the system is exponentially stable, and they are more easily verified and applied in practice.


Author(s):  
Georg A. Gottwald ◽  
Ian Melbourne

A recent paper of Melbourne & Stuart (2011 A note on diffusion limits of chaotic skew product flows. Nonlinearity 24 , 1361–1367 (doi:10.1088/0951-7715/24/4/018)) gives a rigorous proof of convergence of a fast–slow deterministic system to a stochastic differential equation with additive noise. In contrast to other approaches, the assumptions on the fast flow are very mild. In this paper, we extend this result from continuous time to discrete time. Moreover, we show how to deal with one-dimensional multiplicative noise. This raises the issue of how to interpret certain stochastic integrals; it is proved that the integrals are of Stratonovich type for continuous time and neither Stratonovich nor Itô for discrete time. We also provide a rigorous derivation of super-diffusive limits where the stochastic differential equation is driven by a stable Lévy process. In the case of one-dimensional multiplicative noise, the stochastic integrals are of Marcus type both in the discrete and continuous time contexts.


1987 ◽  
Vol 24 (02) ◽  
pp. 370-377 ◽  
Author(s):  
E. J. Pauwels

The purpose of this paper is to show that smoothness conditions on the diffusion and drift coefficient of a one-dimensional stochastic differential equation imply the existence and smoothness of a first-passage density. In order to be able to prove this, we shall show that Brownian motion conditioned to first hit a point at a specified time has the same distribution as a Bessel (3)-process with changed time scale.


1991 ◽  
Vol 23 (2) ◽  
pp. 303-316 ◽  
Author(s):  
Kiyomasa Narita

The oscillator of the Liénard type with mean-field containing a large parameter α < 0 is considered. The solution of the two-dimensional stochastic differential equation with mean-field of the McKean type is taken as the response of the oscillator. By a rigorous evaluation of the upper bound of the displacement process depending on the parameter α, a one-dimensional limit diffusion process as α → ∞is derived and identified. Then our result extends the Smoluchowski–Kramers approximation for the Langevin equation without mean-field to the McKean equation with mean-field.


2014 ◽  
Vol 2014 ◽  
pp. 1-16 ◽  
Author(s):  
Dan Li ◽  
Jing’an Cui ◽  
Guohua Song

This paper studies the effect of jump-diffusion random environmental perturbations on the asymptotic behaviour and extinction of Lotka-Volterra population dynamics with delays. The contributions of this paper lie in the following: (a) to consider delay stochastic differential equation with jumps, we introduce a proper initial data space, in which the initial data may be discontinuous function with downward jumps; (b) we show that the delay stochastic differential equation with jumps associated with our model has a unique global positive solution and give sufficient conditions that ensure stochastically ultimate boundedness, moment average boundedness in time, and asymptotic polynomial growth of our model; (c) the sufficient conditions for the extinction of the system are obtained, which generalized the former results and showed that the sufficiently large random jump magnitudes and intensity (average rate of jump events arrival) may lead to extinction of the population.


2015 ◽  
Vol 5 (4) ◽  
pp. 387-404 ◽  
Author(s):  
Jie Yang ◽  
Weidong Zhao

AbstractConvergence analysis is presented for recently proposed multistep schemes, when applied to a special type of forward-backward stochastic differential equations (FB-SDEs) that arises in finance and stochastic control. The corresponding k-step scheme admits a k-order convergence rate in time, when the exact solution of the forward stochastic differential equation (SDE) is given. Our analysis assumes that the terminal conditions and the FBSDE coefficients are sufficiently regular.


2014 ◽  
Vol 07 (03) ◽  
pp. 1450037
Author(s):  
T. O. Akinwumi ◽  
B. J. Adegboyegun

This paper presents one-step numerical schemes for solving quantum stochastic differential equation (QSDE). The algorithms are developed based on the definition of QSDE and the solution techniques yield rapidly convergent sequences which are readily computable. As well as developing the schemes, we perform some numerical experiments and the solutions obtained compete favorably with exact solutions. The solution techniques presented in this work can handle all class of QSDEs most especially when the exact solution does not exist.


Sign in / Sign up

Export Citation Format

Share Document