On queues with periodic Poisson input

1981 ◽  
Vol 18 (04) ◽  
pp. 889-900 ◽  
Author(s):  
Austin J. Lemoine

This paper is concerned with asymptotic results for a single-server queue having periodic Poisson input and general service-time distribution, and carries forward the analysis of this model initiated in Harrison and Lemoine. First, it is shown that a theorem of Hooke relating the stationary virtual and actual waiting-time distributions for the GI/G/1 queue extends to the periodic Poisson model; it is then pointed out that Hooke's theorem leads to the extension (developed in [3]) of a related theorem of Takács. Second, it is demonstrated that the asymptotic distribution for the server-load process at a fixed ‘time of day' coincides with the distribution for the supremum, over the time horizon [0,∞), of the sum of a stationary compound Poisson process with negative drift and a continuous periodic function. Some implications of this characterization result for the computation and approximation of the asymptotic distributions are then discussed, including a direct proof, for the periodic Poisson case, of a recent result of Rolski comparing mean asymptotic customer waiting time with that of a corresponding M/G/1 system.

1981 ◽  
Vol 18 (4) ◽  
pp. 889-900 ◽  
Author(s):  
Austin J. Lemoine

This paper is concerned with asymptotic results for a single-server queue having periodic Poisson input and general service-time distribution, and carries forward the analysis of this model initiated in Harrison and Lemoine. First, it is shown that a theorem of Hooke relating the stationary virtual and actual waiting-time distributions for the GI/G/1 queue extends to the periodic Poisson model; it is then pointed out that Hooke's theorem leads to the extension (developed in [3]) of a related theorem of Takács. Second, it is demonstrated that the asymptotic distribution for the server-load process at a fixed ‘time of day' coincides with the distribution for the supremum, over the time horizon [0,∞), of the sum of a stationary compound Poisson process with negative drift and a continuous periodic function. Some implications of this characterization result for the computation and approximation of the asymptotic distributions are then discussed, including a direct proof, for the periodic Poisson case, of a recent result of Rolski comparing mean asymptotic customer waiting time with that of a corresponding M/G/1 system.


1989 ◽  
Vol 26 (02) ◽  
pp. 390-397 ◽  
Author(s):  
Austin J. Lemoine

This paper develops moment formulas for asymptotic workload and waiting time in a single-server queue with periodic Poisson input and general service distribution. These formulas involve the corresponding moments of waiting-time (workload) for the M/G/1 system with the same average arrival rate and service distribution. In certain cases, all the terms in the formulas can be computed exactly, including moments of workload at each ‘time of day.' The approach makes use of an asymptotic version of the Takács [12] integro-differential equation, together with representation results of Harrison and Lemoine [3] and Lemoine [6].


1977 ◽  
Vol 14 (3) ◽  
pp. 566-576 ◽  
Author(s):  
J. Michael Harrison ◽  
Austin J. Lemoine

Consider a single-server queue with service times distributed as a general random variable S and with non-stationary Poisson input. It is assumed that the arrival rate function λ (·) is periodic with average value λ and that ρ = λE(S) < 1. Both weak and strong limit theorems are proved for the waiting-time process W = {W1, W2, · ··} and the server load (or virtual waiting-time process) Z = {Z(t), t ≧ 0}. The asymptotic distributions associated with Z and W are shown to be related in various ways. In particular, we extend to the case of periodic Poisson input a well-known formula (due to Takács) relating the limiting virtual and actual waiting-time distributions of a GI/G/1 queue.


1977 ◽  
Vol 14 (03) ◽  
pp. 566-576 ◽  
Author(s):  
J. Michael Harrison ◽  
Austin J. Lemoine

Consider a single-server queue with service times distributed as a general random variable S and with non-stationary Poisson input. It is assumed that the arrival rate function λ (·) is periodic with average value λ and that ρ = λE(S) &lt; 1. Both weak and strong limit theorems are proved for the waiting-time process W = {W 1, W 2, · ··} and the server load (or virtual waiting-time process) Z = {Z(t), t ≧ 0}. The asymptotic distributions associated with Z and W are shown to be related in various ways. In particular, we extend to the case of periodic Poisson input a well-known formula (due to Takács) relating the limiting virtual and actual waiting-time distributions of a GI/G/1 queue.


1989 ◽  
Vol 26 (2) ◽  
pp. 390-397 ◽  
Author(s):  
Austin J. Lemoine

This paper develops moment formulas for asymptotic workload and waiting time in a single-server queue with periodic Poisson input and general service distribution. These formulas involve the corresponding moments of waiting-time (workload) for the M/G/1 system with the same average arrival rate and service distribution. In certain cases, all the terms in the formulas can be computed exactly, including moments of workload at each ‘time of day.' The approach makes use of an asymptotic version of the Takács [12] integro-differential equation, together with representation results of Harrison and Lemoine [3] and Lemoine [6].


1975 ◽  
Vol 7 (3) ◽  
pp. 647-655 ◽  
Author(s):  
John Dagsvik

In a previous paper (Dagsvik (1975)) the waiting time process of the single server bulk queue is considered and a corresponding waiting time equation is established. In this paper the waiting time equation is solved when the inter-arrival or service time distribution is a linear combination of Erlang distributions. The analysis is essentially based on algebraic arguments.


1978 ◽  
Vol 15 (3) ◽  
pp. 590-601 ◽  
Author(s):  
Do Le Minh

This paper studies a discrete-time, single-server queueing model having a compound Poisson input with time-dependent parameters and a general service time distribution.All major transient characteristics of the system can be calculated very easily. For the queueing model with periodic arrival function, some explicit results are obtained.


1985 ◽  
Vol 22 (3) ◽  
pp. 688-696 ◽  
Author(s):  
A. G. De Kok ◽  
H. C. Tijms

A queueing situation often encountered in practice is that in which customers wait for service for a limited time only and leave the system if not served during that time. This paper considers a single-server queueing system with Poisson input and general service times, where a customer becomes a lost customer when his service has not begun within a fixed time after his arrival. For performance measures like the fraction of customers who are lost and the average delay in queue of a customer we obtain exact and approximate results that are useful for practical applications.


1984 ◽  
Vol 16 (4) ◽  
pp. 887-905 ◽  
Author(s):  
F. Baccelli ◽  
P. Boyer ◽  
G. Hebuterne

We consider a single-server queueing system in which a customer gives up whenever his waiting time is larger than a random threshold, his patience time. In the case of a GI/GI/1 queue with i.i.d. patience times, we establish the extensions of the classical GI/GI/1 formulae concerning the stability condition and the relation between actual and virtual waiting-time distribution functions. We also prove that these last two distribution functions coincide in the case of a Poisson input process and determine their common law.


1997 ◽  
Vol 34 (03) ◽  
pp. 773-784 ◽  
Author(s):  
Onno J. Boxma ◽  
Uri Yechiali

This paper considers a single-server queue with Poisson arrivals and multiple customer feedbacks. If the first service attempt of a newly arriving customer is not successful, he returns to the end of the queue for another service attempt, with a different service time distribution. He keeps trying in this manner (as an ‘old' customer) until his service is successful. The server operates according to the ‘gated vacation' strategy; when it returns from a vacation to find K (new and old) customers, it renders a single service attempt to each of them and takes another vacation, etc. We study the joint queue length process of new and old customers, as well as the waiting time distribution of customers. Some extensions are also discussed.


Sign in / Sign up

Export Citation Format

Share Document