Traffic light queues as a generalization to queueing theory

1971 ◽  
Vol 8 (03) ◽  
pp. 480-493 ◽  
Author(s):  
Hisashi Mine ◽  
Katsuhisa Ohno

Fixed-cycle traffic light queues have been investigated by probabilistic methods by many authors. Beckmann, McGuire and Winsten (1956) considered a discrete time queueing model with binomial arrivals and regular departure headways and derived a relation between the stationary mean delay per vehicle and the stationary mean queue-length at the beginning of a red period of the traffic light. Haight (1959) and Buckley and Wheeler (1964) considered models with Poisson arrivals and regular departure headways and investigated certain properties of the queue-length. Newell (1960) dealt with the model proposed by the first authors and obtained the probability generating function of the stationary queue-length distribution. Darroch (1964) discussed a more general discrete time model with stationary, independent arrivals and regular departure headways and derived a necessary and sufficient condition for the stationary queue-length distribution to exist and obtained its probability generating function. The above two authors, Little (1961), Miller (1963), Newell (1965), McNeil (1968), Siskind (1970) and others gave approximate expressions for the stationary mean delay per vehicle for fixed-cycle traffic light queues of various types. All of the authors mentioned above dealt with the queue-length.

1971 ◽  
Vol 8 (3) ◽  
pp. 480-493 ◽  
Author(s):  
Hisashi Mine ◽  
Katsuhisa Ohno

Fixed-cycle traffic light queues have been investigated by probabilistic methods by many authors. Beckmann, McGuire and Winsten (1956) considered a discrete time queueing model with binomial arrivals and regular departure headways and derived a relation between the stationary mean delay per vehicle and the stationary mean queue-length at the beginning of a red period of the traffic light. Haight (1959) and Buckley and Wheeler (1964) considered models with Poisson arrivals and regular departure headways and investigated certain properties of the queue-length. Newell (1960) dealt with the model proposed by the first authors and obtained the probability generating function of the stationary queue-length distribution. Darroch (1964) discussed a more general discrete time model with stationary, independent arrivals and regular departure headways and derived a necessary and sufficient condition for the stationary queue-length distribution to exist and obtained its probability generating function. The above two authors, Little (1961), Miller (1963), Newell (1965), McNeil (1968), Siskind (1970) and others gave approximate expressions for the stationary mean delay per vehicle for fixed-cycle traffic light queues of various types. All of the authors mentioned above dealt with the queue-length.


1996 ◽  
Vol 7 (5) ◽  
pp. 519-543 ◽  
Author(s):  
Yongzhi Yang ◽  
Charles Knessl

We consider the GI/M/1 – K queue which has a capacity of K customers. Using singular perturbation methods, we construct asymptotic approximations to the stationary queue length distribution. We assume that K is large and treat several different parameter regimes. Extensive numerical comparisons are used to show the quality of the proposed approximations.


2019 ◽  
Vol 53 (2) ◽  
pp. 367-387
Author(s):  
Shaojun Lan ◽  
Yinghui Tang

This paper deals with a single-server discrete-time Geo/G/1 queueing model with Bernoulli feedback and N-policy where the server leaves for modified multiple vacations once the system becomes empty. Applying the law of probability decomposition, the renewal theory and the probability generating function technique, we explicitly derive the transient queue length distribution as well as the recursive expressions of the steady-state queue length distribution. Especially, some corresponding results under special cases are directly obtained. Furthermore, some numerical results are provided for illustrative purposes. Finally, a cost optimization problem is numerically analyzed under a given cost structure.


1989 ◽  
Vol 26 (1) ◽  
pp. 142-151 ◽  
Author(s):  
S. D. Sharma

This paper studies the transient and steady-state behaviour of a continuous and discrete-time queueing system with non-Markovian type of departure mechanism. The Laplace transforms of the probability generating function of the time-dependent queue length distribution in the transient state are obtained and the probability generating function of the queue length distribution in the steady state is derived therefrom. Finally, some particular cases are discussed.


1989 ◽  
Vol 26 (01) ◽  
pp. 142-151
Author(s):  
S. D. Sharma

This paper studies the transient and steady-state behaviour of a continuous and discrete-time queueing system with non-Markovian type of departure mechanism. The Laplace transforms of the probability generating function of the time-dependent queue length distribution in the transient state are obtained and the probability generating function of the queue length distribution in the steady state is derived therefrom. Finally, some particular cases are discussed.


1988 ◽  
Vol 25 (1) ◽  
pp. 228-231 ◽  
Author(s):  
Gordon E. Willmot

This note concerns the distribution of the equilibrium M/G/1 queue length. A representation for the probability generating function is given which allows for an explicit finite sum representation of the associated probabilities. The radius of convergence of the probability generating function and an asymptotic formula for the right tail of the distribution also follow from this representation, as well as infinite divisibility of the queue-length distribution when the service distribution is infinitely divisible. Extension of these results to the bulk arrival case is straightforward.


1988 ◽  
Vol 25 (01) ◽  
pp. 228-231 ◽  
Author(s):  
Gordon E. Willmot

This note concerns the distribution of the equilibrium M/G/1 queue length. A representation for the probability generating function is given which allows for an explicit finite sum representation of the associated probabilities. The radius of convergence of the probability generating function and an asymptotic formula for the right tail of the distribution also follow from this representation, as well as infinite divisibility of the queue-length distribution when the service distribution is infinitely divisible. Extension of these results to the bulk arrival case is straightforward.


2018 ◽  
Vol 7 (2.15) ◽  
pp. 76
Author(s):  
Koh Siew Khew ◽  
Chin Ching Herny ◽  
Tan Yi Fei ◽  
Pooi Ah Hin ◽  
Goh Yong Kheng ◽  
...  

This paper considers a single server queue in which the service time is exponentially distributed and the service station may breakdown according to a Poisson process with the rates γ and γ' in busy period and idle period respectively. Repair will be performed immediately following a breakdown. The repair time is assumed to have an exponential distribution. Let g(t) and G(t) be the probability density function and the cumulative distribution function of the interarrival time respectively. When t tends to infinity, the rate of g(t)/[1 – G(t)] will tend to a constant. A set of equations will be derived for the probabilities of the queue length and the states of the arrival, repair and service processes when the queue is in a stationary state. By solving these equations, numerical results for the stationary queue length distribution can be obtained. 


Sign in / Sign up

Export Citation Format

Share Document