On an elementary characterization of the increasing convex ordering, by an application

1994 ◽  
Vol 31 (03) ◽  
pp. 834-840
Author(s):  
Armand M. Makowski

In this short note, we present a simple characterization of the increasing convex ordering on the set of probability distributions on ℝ. We show its usefulness by providing a very short proof of a comparison result for M/GI/1 queues due to Daley and Rolski, and obtained by completely different means.

1994 ◽  
Vol 31 (3) ◽  
pp. 834-840 ◽  
Author(s):  
Armand M. Makowski

In this short note, we present a simple characterization of the increasing convex ordering on the set of probability distributions on ℝ. We show its usefulness by providing a very short proof of a comparison result for M/GI/1 queues due to Daley and Rolski, and obtained by completely different means.


1986 ◽  
Vol 18 (03) ◽  
pp. 660-678 ◽  
Author(s):  
C. Radhakrishna Rao ◽  
D. N. Shanbhag

The problem of identifying solutions of general convolution equations relative to a group has been studied in two classical papers by Choquet and Deny (1960) and Deny (1961). Recently, Lau and Rao (1982) have considered the analogous problem relative to a certain semigroup of the real line, which extends the results of Marsaglia and Tubilla (1975) and a lemma of Shanbhag (1977). The extended versions of Deny&s theorem contained in the papers by Lau and Rao, and Shanbhag (which we refer to as LRS theorems) yield as special cases improved versions of several characterizations of exponential, Weibull, stable, Pareto, geometric, Poisson and negative binomial distributions obtained by various authors during the last few years. In this paper we review some of the recent contributions to characterization of probability distributions (whose authors do not seem to be aware of LRS theorems or special cases existing earlier) and show how improved versions of these results follow as immediate corollaries to LRS theorems. We also give a short proof of Lau–Rao theorem based on Deny&s theorem and thus establish a direct link between the results of Deny (1961) and those of Lau and Rao (1982). A variant of Lau–Rao theorem is proved and applied to some characterization problems.


1986 ◽  
Vol 18 (3) ◽  
pp. 660-678 ◽  
Author(s):  
C. Radhakrishna Rao ◽  
D. N. Shanbhag

The problem of identifying solutions of general convolution equations relative to a group has been studied in two classical papers by Choquet and Deny (1960) and Deny (1961). Recently, Lau and Rao (1982) have considered the analogous problem relative to a certain semigroup of the real line, which extends the results of Marsaglia and Tubilla (1975) and a lemma of Shanbhag (1977). The extended versions of Deny&s theorem contained in the papers by Lau and Rao, and Shanbhag (which we refer to as LRS theorems) yield as special cases improved versions of several characterizations of exponential, Weibull, stable, Pareto, geometric, Poisson and negative binomial distributions obtained by various authors during the last few years. In this paper we review some of the recent contributions to characterization of probability distributions (whose authors do not seem to be aware of LRS theorems or special cases existing earlier) and show how improved versions of these results follow as immediate corollaries to LRS theorems. We also give a short proof of Lau–Rao theorem based on Deny&s theorem and thus establish a direct link between the results of Deny (1961) and those of Lau and Rao (1982). A variant of Lau–Rao theorem is proved and applied to some characterization problems.


2021 ◽  
Vol 76 (2) ◽  
Author(s):  
Andrzej Komisarski ◽  
Teresa Rajba

AbstractWe study the following $$(q-1)$$ ( q - 1 ) th convex ordering relation for qth convolution power of the difference of probability distributions $$\mu $$ μ and $$\nu $$ ν $$\begin{aligned} (\nu -\mu )^{*q}\ge _{(q-1)cx} 0 , \quad q\ge 2, \end{aligned}$$ ( ν - μ ) ∗ q ≥ ( q - 1 ) c x 0 , q ≥ 2 , and we obtain the theorem providing a useful sufficient condition for its verification. We apply this theorem for various families of probability distributions and we obtain several inequalities related to the classical interpolation operators. In particular, taking binomial distributions, we obtain a new, very short proof of the inequality given recently by Abel and Leviatan (2020).


2020 ◽  
Vol 8 (1) ◽  
pp. 36-39
Author(s):  
Lei Cao ◽  
Ariana Hall ◽  
Selcuk Koyuncu

AbstractWe give a short proof of Mirsky’s result regarding the extreme points of the convex polytope of doubly substochastic matrices via Birkhoff’s Theorem and the doubly stochastic completion of doubly sub-stochastic matrices. In addition, we give an alternative proof of the extreme points of the convex polytopes of symmetric doubly substochastic matrices via its corresponding loopy graphs.


Entropy ◽  
2018 ◽  
Vol 20 (11) ◽  
pp. 813 ◽  
Author(s):  
José Amigó ◽  
Sámuel Balogh ◽  
Sergio Hernández

Entropy appears in many contexts (thermodynamics, statistical mechanics, information theory, measure-preserving dynamical systems, topological dynamics, etc.) as a measure of different properties (energy that cannot produce work, disorder, uncertainty, randomness, complexity, etc.). In this review, we focus on the so-called generalized entropies, which from a mathematical point of view are nonnegative functions defined on probability distributions that satisfy the first three Shannon–Khinchin axioms: continuity, maximality and expansibility. While these three axioms are expected to be satisfied by all macroscopic physical systems, the fourth axiom (separability or strong additivity) is in general violated by non-ergodic systems with long range forces, this having been the main reason for exploring weaker axiomatic settings. Currently, non-additive generalized entropies are being used also to study new phenomena in complex dynamics (multifractality), quantum systems (entanglement), soft sciences, and more. Besides going through the axiomatic framework, we review the characterization of generalized entropies via two scaling exponents introduced by Hanel and Thurner. In turn, the first of these exponents is related to the diffusion scaling exponent of diffusion processes, as we also discuss. Applications are addressed as the description of the main generalized entropies advances.


Sign in / Sign up

Export Citation Format

Share Document