scholarly journals On the Raşa Inequality for Higher Order Convex Functions

2021 ◽  
Vol 76 (2) ◽  
Author(s):  
Andrzej Komisarski ◽  
Teresa Rajba

AbstractWe study the following $$(q-1)$$ ( q - 1 ) th convex ordering relation for qth convolution power of the difference of probability distributions $$\mu $$ μ and $$\nu $$ ν $$\begin{aligned} (\nu -\mu )^{*q}\ge _{(q-1)cx} 0 , \quad q\ge 2, \end{aligned}$$ ( ν - μ ) ∗ q ≥ ( q - 1 ) c x 0 , q ≥ 2 , and we obtain the theorem providing a useful sufficient condition for its verification. We apply this theorem for various families of probability distributions and we obtain several inequalities related to the classical interpolation operators. In particular, taking binomial distributions, we obtain a new, very short proof of the inequality given recently by Abel and Leviatan (2020).

1994 ◽  
Vol 31 (3) ◽  
pp. 834-840 ◽  
Author(s):  
Armand M. Makowski

In this short note, we present a simple characterization of the increasing convex ordering on the set of probability distributions on ℝ. We show its usefulness by providing a very short proof of a comparison result for M/GI/1 queues due to Daley and Rolski, and obtained by completely different means.


1994 ◽  
Vol 31 (03) ◽  
pp. 834-840
Author(s):  
Armand M. Makowski

In this short note, we present a simple characterization of the increasing convex ordering on the set of probability distributions on ℝ. We show its usefulness by providing a very short proof of a comparison result for M/GI/1 queues due to Daley and Rolski, and obtained by completely different means.


1986 ◽  
Vol 18 (03) ◽  
pp. 660-678 ◽  
Author(s):  
C. Radhakrishna Rao ◽  
D. N. Shanbhag

The problem of identifying solutions of general convolution equations relative to a group has been studied in two classical papers by Choquet and Deny (1960) and Deny (1961). Recently, Lau and Rao (1982) have considered the analogous problem relative to a certain semigroup of the real line, which extends the results of Marsaglia and Tubilla (1975) and a lemma of Shanbhag (1977). The extended versions of Deny&s theorem contained in the papers by Lau and Rao, and Shanbhag (which we refer to as LRS theorems) yield as special cases improved versions of several characterizations of exponential, Weibull, stable, Pareto, geometric, Poisson and negative binomial distributions obtained by various authors during the last few years. In this paper we review some of the recent contributions to characterization of probability distributions (whose authors do not seem to be aware of LRS theorems or special cases existing earlier) and show how improved versions of these results follow as immediate corollaries to LRS theorems. We also give a short proof of Lau–Rao theorem based on Deny&s theorem and thus establish a direct link between the results of Deny (1961) and those of Lau and Rao (1982). A variant of Lau–Rao theorem is proved and applied to some characterization problems.


1986 ◽  
Vol 18 (3) ◽  
pp. 660-678 ◽  
Author(s):  
C. Radhakrishna Rao ◽  
D. N. Shanbhag

The problem of identifying solutions of general convolution equations relative to a group has been studied in two classical papers by Choquet and Deny (1960) and Deny (1961). Recently, Lau and Rao (1982) have considered the analogous problem relative to a certain semigroup of the real line, which extends the results of Marsaglia and Tubilla (1975) and a lemma of Shanbhag (1977). The extended versions of Deny&s theorem contained in the papers by Lau and Rao, and Shanbhag (which we refer to as LRS theorems) yield as special cases improved versions of several characterizations of exponential, Weibull, stable, Pareto, geometric, Poisson and negative binomial distributions obtained by various authors during the last few years. In this paper we review some of the recent contributions to characterization of probability distributions (whose authors do not seem to be aware of LRS theorems or special cases existing earlier) and show how improved versions of these results follow as immediate corollaries to LRS theorems. We also give a short proof of Lau–Rao theorem based on Deny&s theorem and thus establish a direct link between the results of Deny (1961) and those of Lau and Rao (1982). A variant of Lau–Rao theorem is proved and applied to some characterization problems.


Filomat ◽  
2019 ◽  
Vol 33 (8) ◽  
pp. 2431-2445
Author(s):  
A.R. Sattarzadeh ◽  
H. Mohebi

In this paper, we first investigate characterizations of maximal elements of abstract convex functions under a mild condition. Also, we give various characterizations for global "-minimum of the difference of two abstract convex functions and, by using the abstract Rockafellar?s antiderivative, we present the abstract ?-subdifferential of abstract convex functions in terms of their abstract subdifferential. Finally, as an application, a necessary and sufficient condition for global ?-minimum of the difference of two increasing and positively homogeneous (IPH) functions is presented.


2020 ◽  
Vol 32 (5) ◽  
pp. 1131-1141 ◽  
Author(s):  
Paweł Zaprawa

AbstractIn this paper we discuss coefficient problems for functions in the class {{\mathcal{C}}_{0}(k)}. This family is a subset of {{\mathcal{C}}}, the class of close-to-convex functions, consisting of functions which are convex in the positive direction of the real axis. Our main aim is to find some bounds of the difference of successive coefficients depending on the fixed second coefficient. Under this assumption we also estimate {|a_{n+1}|-|a_{n}|} and {|a_{n}|}. Moreover, it is proved that {\operatorname{Re}\{a_{n}\}\geq 0} for all {f\in{\mathcal{C}}_{0}(k)}.


2018 ◽  
Vol 68 (4) ◽  
pp. 773-788 ◽  
Author(s):  
Sadia Khalid ◽  
Josip Pečarić ◽  
Ana Vukelić

Abstract In this work, the Green’s function of order two is used together with Fink’s approach in Ostrowski’s inequality to represent the difference between the sides of the Sherman’s inequality. Čebyšev, Grüss and Ostrowski-type inequalities are used to obtain several bounds of the presented Sherman-type inequality. Further, we construct a new family of exponentially convex functions and Cauchy-type means by looking to the linear functionals associated with the obtained inequalities.


1997 ◽  
Vol 28 (1) ◽  
pp. 17-32
Author(s):  
R. BHARATI ◽  
R. PARVATHAM ◽  
A. SWAMINATHAN

We determine a sufficient condition for a function $f(z)$ to be uniformly convex of order et that is also necessary when $f(z)$ has negative coefficients. This enables us to express these classes of functions in terms of convex functions of particular order. Similar results for corresponding classes of starlike functions are also obtained. The convolution condition for the above two classes are discussed.


Author(s):  
Hassan Tawakol A. Fadol

The purpose of this paper was to identify the values of the parameters of the shape of the binomial, bias one and natural distributions. Using the estimation method and maximum likelihood Method, the criterion of differentiation was used to estimate the shape parameter between the probability distributions and to arrive at the best estimate of the parameter of the shape when the sample sizes are small, medium, The problem was to find the best estimate of the characteristics of the society to be estimated so that they are close to the estimated average of the mean error squares and also the effect of the estimation method on estimating the shape parameter of the distributions at the sizes of different samples In the values of the different shape parameter, the descriptive and inductive method was selected in the analysis of the data by generating 1000 random numbers of different sizes using the simulation method through the MATLAB program. A number of results were reached, 10) to estimate the small shape parameter (0.3) for binomial distributions and Poisson and natural and they can use the Poisson distribution because it is the best among the distributions, and to estimate the parameter of figure (0.5), (0.7), (0.9) Because it is better for binomial binomial distributions, when the size of a sample (70) for a teacher estimate The small figure (0.3) of the binomial and boson distributions and natural distributions can be used for normal distribution because it is the best among the distributions.


Sign in / Sign up

Export Citation Format

Share Document