Somatic cell count in buffalo milk using fuzzy clustering and image processing techniques

2021 ◽  
Vol 88 (1) ◽  
pp. 69-72
Author(s):  
Aline Silva Ramos ◽  
Cristiano Hora Fontes ◽  
Adonias Magdiel Ferreira ◽  
Camila Costa Baccili ◽  
Karen Nascimento da Silva ◽  
...  

AbstractThis research communication presents an automatic method for the counting of somatic cells in buffalo milk, which includes the application of a fuzzy clustering method and image processing techniques (somatic cell count with fuzzy clustering and image processing|, SCCFCI). Somatic cell count (SCC) in milk is the main biomarker for assessing milk quality and it is traditionally performed by exhaustive methods consisting of the visual observation of cells in milk smears through a microscope, which generates uncertainties associated with human interpretation. Unlike other similar works, the proposed method applies the Fuzzy C-Means (FCM) method as a preprocessing step in order to separate the images (objects) of the cells into clusters according to the color intensity. This contributes signficantly to the performance of the subsequent processing steps (thresholding, segmentation and recognition/identification). Two methods of thresholding were evaluated and the Watershed Transform was used for the identification and separation of nearby cells. A detailed statistical analysis of the results showed that the SCCFCI method is able to provide results which are consistent with those obtained by conventional counting. This method therefore represents a viable alternative for quality control in buffalo milk production.

2021 ◽  
Vol 3 (1) ◽  
pp. 10
Author(s):  
Ilhamsyah Muhammad Nurdin ◽  
Abdul Fadlil

Eye sight is sometimes deceptive, especially in determining the quality of a canned food, so it is necessary to use technology that resembles human visual observation, namely in the form of an application. The process to detect the quality of canned food uses image processing methods, especially thresholding, which is then designed so that the application is able to determine the quality of canned food with the help of the MATLAB GUI which detects and then sends it from making the MATLAB GUI on the Laptop to Android using FTP (File Transfer Protocol). At the end of the process, it is marked with known good and bad quality of canned food with an android application that has been specially designed with an accuracy level of 84% with a thresholding value of 70.


2003 ◽  
Vol 16 (5) ◽  
pp. 738-742 ◽  
Author(s):  
C. Tripaldi ◽  
S. Terramoccia ◽  
S. Bartocci ◽  
M. Angelucci ◽  
V. Danese

Author(s):  
Lucas José Luduverio Pizauro ◽  
Camila Chioda de Almeida ◽  
Oswaldo Durival Rossi Junior ◽  
Fernando Antônio de Ávila ◽  
Luiz Francisco Zafalon

Author(s):  
B.V.V. Prasad ◽  
E. Marietta ◽  
J.W. Burns ◽  
M.K. Estes ◽  
W. Chiu

Rotaviruses are spherical, double-shelled particles. They have been identified as a major cause of infantile gastroenteritis worldwide. In our earlier studies we determined the three-dimensional structures of double-and single-shelled simian rotavirus embedded in vitreous ice using electron cryomicroscopy and image processing techniques to a resolution of 40Å. A distinctive feature of the rotavirus structure is the presence of 132 large channels spanning across both the shells at all 5- and 6-coordinated positions of a T=13ℓ icosahedral lattice. The outer shell has 60 spikes emanating from its relatively smooth surface. The inner shell, in contrast, exhibits a bristly surface made of 260 morphological units at all local and strict 3-fold axes (Fig.l).The outer shell of rotavirus is made up of two proteins, VP4 and VP7. VP7, a glycoprotein and a neutralization antigen, is the major component. VP4 has been implicated in several important functions such as cell penetration, hemagglutination, neutralization and virulence. From our earlier studies we had proposed that the spikes correspond to VP4 and the rest of the surface is composed of VP7. Our recent structural studies, using the same techniques, with monoclonal antibodies specific to VP4 have established that surface spikes are made up of VP4.


Author(s):  
V. Deepika ◽  
T. Rajasenbagam

A brain tumor is an uncontrolled growth of abnormal brain tissue that can interfere with normal brain function. Although various methods have been developed for brain tumor classification, tumor detection and multiclass classification remain challenging due to the complex characteristics of the brain tumor. Brain tumor detection and classification are one of the most challenging and time-consuming tasks in the processing of medical images. MRI (Magnetic Resonance Imaging) is a visual imaging technique, which provides a information about the soft tissues of the human body, which helps identify the brain tumor. Proper diagnosis can prevent a patient's health to some extent. This paper presents a review of various detection and classification methods for brain tumor classification using image processing techniques.


2019 ◽  
Vol 7 (5) ◽  
pp. 165-168 ◽  
Author(s):  
Prabira Kumar Sethy ◽  
Swaraj Kumar Sahu ◽  
Nalini Kanta Barpanda ◽  
Amiya Kumar Rath

2018 ◽  
Vol 6 (6) ◽  
pp. 1493-1499
Author(s):  
Shrutika.C.Rampure . ◽  
Dr. Vindhya .P. Malagi ◽  
Dr. Ramesh Babu D.R

Sign in / Sign up

Export Citation Format

Share Document