Blood Group Detection using Image Processing Techniques A Review

2019 ◽  
Vol 7 (4) ◽  
pp. 859-863
Author(s):  
Ruchi Jogi ◽  
Avinash Dhole
Author(s):  
P. Hansik Sagar

Blood grouping is one of the common and most essentiality for many of the major healthcare applications. Traditional way to determine the blood group involve human such as trained medical professionals which generally lead to human error. One of the solutions to overcome this issue is to automate and digitize this method. Image processing and computer vision techniques can be used for this purpose. Therefore, in this paper, we investigate the blood group detection using image processing techniques. For this purpose, experiment starts by taking images of sample blood slide as input and convert it into gray scale followed by binarization and canny edge detection. Finally, it decided the agglutination by counting detected edges. Performance of method is tested on real- time blood sample dataset. Experimental results show the accuracy of proposed method is comparable to real- time test.


In an emergency, an urgent blood transfusion from a person to the patient is required and blood group identification is the first process to do so. In addition, a hemoglobin test is often required to make decisions about blood transfusion as well as to check anemia. Hemoglobin testing is also required for complete blood count and monitoring a number of diseases. These blood tests are almost difficult in rural areas where lab facilities are not sufficient. Researchers proposed a number of methods to identify blood groups using computer vision techniques. However, no study was conducted to identify blood group and hemoglobin level in a work using image processing techniques and an android mobile application which shows high detection accuracy. In this paper, manual clinical experiments have been replaced by an android app using image processing techniques to detect blood groups and hemoglobin levels except users require using antigen before taking samples. The proposed technique is divided into two portions. The first portion is blood group detection, which is done by taking a blood sample and performing the grayscale conversion, binary conversion, segmentation, edge detection, and computation to make the decision. The second section describes how to determine hemoglobin levels by comparing a blood sample image to a hemoglobin color scale (HCS). Here, the Hemoglobin value is determined from their RGB values. It has been discovered that the proposed approaches are capable of detecting hemoglobin levels and blood groups in a cost-effective and error-free manner. As a result, the tests can be conducted in a remote area without adequate lab facilities and the proposed work can solve major steps in blood transfusion difficulties and anemia.


Author(s):  
B.V.V. Prasad ◽  
E. Marietta ◽  
J.W. Burns ◽  
M.K. Estes ◽  
W. Chiu

Rotaviruses are spherical, double-shelled particles. They have been identified as a major cause of infantile gastroenteritis worldwide. In our earlier studies we determined the three-dimensional structures of double-and single-shelled simian rotavirus embedded in vitreous ice using electron cryomicroscopy and image processing techniques to a resolution of 40Å. A distinctive feature of the rotavirus structure is the presence of 132 large channels spanning across both the shells at all 5- and 6-coordinated positions of a T=13ℓ icosahedral lattice. The outer shell has 60 spikes emanating from its relatively smooth surface. The inner shell, in contrast, exhibits a bristly surface made of 260 morphological units at all local and strict 3-fold axes (Fig.l).The outer shell of rotavirus is made up of two proteins, VP4 and VP7. VP7, a glycoprotein and a neutralization antigen, is the major component. VP4 has been implicated in several important functions such as cell penetration, hemagglutination, neutralization and virulence. From our earlier studies we had proposed that the spikes correspond to VP4 and the rest of the surface is composed of VP7. Our recent structural studies, using the same techniques, with monoclonal antibodies specific to VP4 have established that surface spikes are made up of VP4.


Author(s):  
V. Deepika ◽  
T. Rajasenbagam

A brain tumor is an uncontrolled growth of abnormal brain tissue that can interfere with normal brain function. Although various methods have been developed for brain tumor classification, tumor detection and multiclass classification remain challenging due to the complex characteristics of the brain tumor. Brain tumor detection and classification are one of the most challenging and time-consuming tasks in the processing of medical images. MRI (Magnetic Resonance Imaging) is a visual imaging technique, which provides a information about the soft tissues of the human body, which helps identify the brain tumor. Proper diagnosis can prevent a patient's health to some extent. This paper presents a review of various detection and classification methods for brain tumor classification using image processing techniques.


2019 ◽  
Vol 7 (5) ◽  
pp. 165-168 ◽  
Author(s):  
Prabira Kumar Sethy ◽  
Swaraj Kumar Sahu ◽  
Nalini Kanta Barpanda ◽  
Amiya Kumar Rath

2018 ◽  
Vol 6 (6) ◽  
pp. 1493-1499
Author(s):  
Shrutika.C.Rampure . ◽  
Dr. Vindhya .P. Malagi ◽  
Dr. Ramesh Babu D.R

2019 ◽  
Vol 253 ◽  
pp. 137-148 ◽  
Author(s):  
Hao-Da Li ◽  
Chao-Sheng Tang ◽  
Qing Cheng ◽  
Sheng-Jie Li ◽  
Xue-Peng Gong ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document