panicle blast
Recently Published Documents


TOTAL DOCUMENTS

59
(FIVE YEARS 22)

H-INDEX

13
(FIVE YEARS 1)

2021 ◽  
Vol 41 (12) ◽  
Author(s):  
Yunyu Wu ◽  
Ning Xiao ◽  
Yuhong Li ◽  
Qiang Gao ◽  
Yuese Ning ◽  
...  

2021 ◽  
Author(s):  
Yunyu Wu ◽  
Ning Xiao ◽  
Yuhong Li ◽  
Qiang Gao ◽  
Yuese Ning ◽  
...  

Abstract Rice blast is one of the most widespread and devastating diseases in rice production. Tremendous success has been achieved in identification and characterization of genes and quantitative trait loci (QTLs) conferring seedling blast resistance, however, genetic studies on panicle blast resistance have lagged far behind. In this study, two advanced backcross inbred sister lines (MSJ13 and MSJ18) were obtained in the process of introducing Pigm into C134S, and showed significant differences in the panicle blast resistance. One F2 population derived from the crossing MSJ13/MSJ18 was used to QTL mapping for panicle blast resistance using Genotyping by Sequencing (GBS) method. A total of 7 QTLs were identified, including a major QTL qPBR10-1 on chromosome 10 that explaining 24.21% of phenotypic variance with LOD scores of 6.62. Furthermore, qPBR10-1 was verified via the BC1F2 and BC1F3 population and narrowed to a 60.6-kb region with six candidate genes predicted, including two genes encoding exonuclease family protein, two genes encoding hypothetical protein, and two genes encoding transposon protein. The nucleotide variations and the expression patterns of the candidate genes were identified and analyzed between MSJ13 and MSJ18 through sequence comparison and RT-PCR approach, and results indicated that ORF1 and ORF2 encoding exonuclease family protein might be the causal candidate genes for panicle blast resistance in the qPBR10-1 locus.


2021 ◽  
Author(s):  
Yunyu Wu ◽  
Ning Xiao ◽  
Yuhong Li ◽  
Qiang Gao ◽  
Yuese Ning ◽  
...  

Abstract Background Rice blast is one of the most widespread and devastating diseases in rice production. Tremendous success has been achieved in identification and characterization of genes and quantitative trait loci (QTLs) conferring seedling blast resistance, however, genetic studies on panicle blast resistance have lagged far behind. Results In this study, two advanced backcross inbred sister lines (MSJ13 and MSJ18) were obtained in the process of introducing Pigm into C134S, and showed significant differences in the panicle blast resistance. One F2 population derived from the crossing MSJ13/MSJ18 was used to QTL mapping for panicle blast resistance using Genotyping by Sequencing (GBS) method. A total of 7 QTLs were identified, including a major QTL qPBR10-1 on chromosome 10 that explaining 24.21% of phenotypic variance with LOD scores of 6.62. Furthermore, qPBR10-1 was verified via the BC1F2 and BC1F3 population and narrowed to a 60.6-kb region with six candidate genes predicted, including two genes encoding exonuclease family protein, two genes encoding hypothetical protein, and two genes encoding transposon protein. The nucleotide variations and the expression patterns of the candidate genes were identified and analyzed between MSJ13 and MSJ18 through sequence comparison and RT-PCR approach, and results indicated that ORF1 and ORF2 encoding exonuclease family protein might be the causal candidate genes for panicle blast resistance in the qPBR10-1 locus. Conclusions A total of 7 QTLs conferring panicle blast resistance was identified from one F2 population derived from the crossing between two advanced backcross inbred sister lines MSJ13 and MSJ18, which harbored the broad-spectrum resistance gene Pigm. A major QTL qPBR10-1 was fine mapped in a 60.6-kb region with six candidate genes predicted, and ORF1 and ORF2 encoding exonuclease family protein might be the causal candidate genes for panicle blast resistance in the qPBR10-1 locus through sequence comparison and RT-PCR approach.


Author(s):  
Yan Du ◽  
Zhongqiang Qi ◽  
Dong Liang ◽  
Junjie Yu ◽  
Mina Yu ◽  
...  

Rice ◽  
2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Jingfang Dong ◽  
Lian Zhou ◽  
Aiqing Feng ◽  
Shaohong Zhang ◽  
Hua Fu ◽  
...  

Abstract Background Although panicle blast is more destructive to yield loss than leaf blast in rice, the cloned genes that function in panicle blast resistance are still very limited and the molecular mechanisms underlying panicle blast resistance remain largely unknown. Results In the present study, we have confirmed that the three Oxalate oxidase (OXO) genes, OsOXO2, OsOXO3 and OsOXO4 from a blast-resistant cultivar BC10 function in panicle blast resistance in rice. The expression of OsOXO2, OsOXO3 and OsOXO4 were induced by panicle blast inoculation. Subcellular localization analysis revealed that the three OXO proteins are all localized in the nucleus and cytoplasm. Simultaneous silencing of OsOXO2, OsOXO3 and OsOXO4 decreased rice resistance to panicle blast, whereas the OsOXO2, OsOXO3 and OsOXO4 overexpression rice plants individually showed enhanced panicle blast resistance. More H2O2 and higher expression levels of PR genes were observed in the overexpressing plants than in the control plants, while the silencing plants exhibited less H2O2 and lower expression levels of PR genes compared to the control plants. Moreover, phytohormone treatment and the phytohormone signaling related gene expression analysis showed that panicle blast resistance mediated by the three OXO genes was associated with the activation of JA and ABA signaling pathways but suppression of SA signaling pathway. Conclusion OsOXO2, OsOXO3 and OsOXO4 positively regulate panicle blast resistance in rice. The OXO genes could modulate the accumulation of H2O2 and expression levels of PR gene in plants. Moreover, the OXO genes mediated panicle blast resistance could be regulated by ABA, SA and JA, and may be associated with the activation of JA and ABA signaling pathways but suppression of the SA signaling pathway.


Author(s):  
Gabriele Mongiano ◽  
Patrizia Titone ◽  
Simone Bregaglio ◽  
Luigi Tamborini

Genes ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 301
Author(s):  
Vishesh Kumar ◽  
Priyanka Jain ◽  
Sureshkumar Venkadesan ◽  
Suhas Gorakh Karkute ◽  
Jyotika Bhati ◽  
...  

Rice blast is a global threat to food security with up to 50% yield losses. Panicle blast is a more severe form of rice blast and the response of rice plant to leaf and panicle blast is distinct in different genotypes. To understand the specific response of rice in panicle blast, transcriptome analysis of blast resistant cultivar Tetep, and susceptible cultivar HP2216 was carried out using RNA-Seq approach after 48, 72 and 96 h of infection with Magnaporthe oryzae along with mock inoculation. Transcriptome data analysis of infected panicle tissues revealed that 3553 genes differentially expressed in HP2216 and 2491 genes in Tetep, which must be the responsible factor behind the differential disease response. The defense responsive genes are involved mainly in defense pathways namely, hormonal regulation, synthesis of reactive oxygen species, secondary metabolites and cell wall modification. The common differentially expressed genes in both the cultivars were defense responsive transcription factors, NBS-LRR genes, kinases, pathogenesis related genes and peroxidases. In Tetep, cell wall strengthening pathway represented by PMR5, dirigent, tubulin, cell wall proteins, chitinases, and proteases was found to be specifically enriched. Additionally, many novel genes having DOMON, VWF, and PCaP1 domains which are specific to cell membrane were highly expressed only in Tetep post infection, suggesting their role in panicle blast resistance. Thus, our study shows that panicle blast resistance is a complex phenomenon contributed by early defense response through ROS production and detoxification, MAPK and LRR signaling, accumulation of antimicrobial compounds and secondary metabolites, and cell wall strengthening to prevent the entry and spread of the fungi. The present investigation provided valuable candidate genes that can unravel the mechanisms of panicle blast resistance and help in the rice blast breeding program.


2020 ◽  
Author(s):  
Jingfang Dong ◽  
Lian Zhou ◽  
Aiqing Feng ◽  
Shaohong Zhang ◽  
Hua Fu ◽  
...  

Abstract Background Although panicle blast is more destructive to yield loss than leaf blast in rice, the cloned genes that function in panicle blast resistance is still very limited and the molecular mechanisms underlying panicle blast resistance remain largely unknown. Results In the present study, we have confirmed that the three OXO genes, OsOXO2, OsOXO3 and OsOXO4 from a blast-resistant cultivar BC10 function in panicle blast resistance in rice. The expression of OsOXO2, OsOXO3 and OsOXO4 were induced by panicle blast inoculation. Subcellular localization analysis revealed that the three OXO genes are all localized in the cell wall. Simultaneous silencing of OsOXO2, OsOXO3 and OsOXO4 decreased rice resistance to panicle blast, whereas the OsOXO2, OsOXO3 and OsOXO4 overexpression rice plants showed enhanced panicle blast resistance. More H2O2 and higher expression levels of PR genes were observed in the overexpressing plants than in the control plants, while the gene silencing plants exhibited less H2O2 and lower expression levels of PR genes compared to the control plants. Moreover, phytohormone treatment and the gene expression analysis showed that panicle blast resistance mediated by the three OXO genes was associated with the induction of JA and ABA signaling pathways but suppression of SA signaling pathway. Conclusion OsOXO2, OsOXO3 and OsOXO4 positively regulate panicle blast resistance in rice. The OXO genes could modulate the accumulation of H2O2 and expression levels of PR gene in plants. Moreover, the OXO genes mediated panicle blast resistance is associated with the activation of JA and ABA signaling pathways but suppression of the SA signaling pathway.


Sign in / Sign up

Export Citation Format

Share Document