Turbulent rotating convection: an experimental study

2002 ◽  
Vol 458 ◽  
pp. 191-218 ◽  
Author(s):  
PETER VOROBIEFF ◽  
ROBERT E. ECKE

We present experimental measurements of velocity and temperature fields in horizontal planes crossing a cylindrical Rayleigh–Bénard convection cell in steady rotation about its vertical axis. The range of dimensionless rotation rates Ω is from zero to 5×104 for a Rayleigh number R = 3.2×108. The corresponding range of convective Rossby numbers is ∞ > Ro > 0.06. The patterns of velocity and temperature and the flow statistics characterize three basic flow regimes. For Ro [Gt ] 1, the flow is dominated by vortex sheets (plumes) typical of turbulent convection without rotation. The flow patterns for Ro ∼ 1 are cyclone-dominated, with anticyclonic vortices rare. As the Rossby number continues to decrease, the number of anticyclonic vortex structures begins to grow but the vorticity PDF in the vicinity of the top boundary layer still shows skewness favouring cyclonic vorticity. Velocity-averaging near the top of the cell suggests the existence of a global circulation pattern for Ro [Gt ] 1.

2019 ◽  
Vol 867 ◽  
pp. 906-933 ◽  
Author(s):  
Riccardo Togni ◽  
Andrea Cimarelli ◽  
Elisabetta De Angelis

In this work we present and demonstrate the reliability of a theoretical framework for the study of thermally driven turbulence. It consists of scale-by-scale budget equations for the second-order velocity and temperature structure functions and their limiting cases, represented by the turbulent kinetic energy and temperature variance budgets. This framework represents an extension of the classical Kolmogorov and Yaglom equations to inhomogeneous and anisotropic flows, and allows for a novel assessment of the turbulent processes occurring at different scales and locations in the fluid domain. Two relevant characteristic scales, $\ell _{c}^{u}$ for the velocity field and $\ell _{c}^{\unicode[STIX]{x1D703}}$ for the temperature field, are identified. These variables separate the space of scales into a quasi-homogeneous range, characterized by turbulent kinetic energy and temperature variance cascades towards dissipation, and an inhomogeneity-dominated range, where the production and the transport in physical space are important. This theoretical framework is then extended to the context of large-eddy simulation to quantify the effect of a low-pass filtering operation on both resolved and subgrid dynamics of turbulent Rayleigh–Bénard convection. It consists of single-point and scale-by-scale budget equations for the filtered velocity and temperature fields. To evaluate the effect of the filter length $\ell _{F}$ on the resolved and subgrid dynamics, the velocity and temperature fields obtained from a direct numerical simulation are split into filtered and residual components using a spectral cutoff filter. It is found that when $\ell _{F}$ is smaller than the minimum values of the cross-over scales given by $\ell _{c,min}^{\unicode[STIX]{x1D703}\ast }=\ell _{c,min}^{\unicode[STIX]{x1D703}}Nu/H=0.8$, the resolved processes correspond to the exact ones, except for a depletion of viscous and thermal dissipations, and the only role of the subgrid scales is to drain turbulent kinetic energy and temperature variance to dissipate them. On the other hand, the resolved dynamics is much poorer in the near-wall region and the effects of the subgrid scales are more complex for filter lengths of the order of $\ell _{F}\approx 3\ell _{c,min}^{\unicode[STIX]{x1D703}}$ or larger. This study suggests that classic eddy-viscosity/diffusivity models employed in large-eddy simulation may suffer from some limitations for large filter lengths, and that alternative closures should be considered to account for the inhomogeneous processes at subgrid level. Moreover, the theoretical framework based on the filtered Kolmogorov and Yaglom equations may represent a valuable tool for future assessments of the subgrid-scale models.


2011 ◽  
Vol 683 ◽  
pp. 94-111 ◽  
Author(s):  
Quan Zhou ◽  
Chun-Mei Li ◽  
Zhi-Ming Lu ◽  
Yu-Lu Liu

AbstractWe report an experimental investigation of the longitudinal space–time cross-correlation function of the velocity field, $C(r, \tau )$, in a cylindrical turbulent Rayleigh–Bénard convection cell using the particle image velocimetry (PIV) technique. We show that while Taylor’s frozen-flow hypothesis does not hold in turbulent thermal convection, the recent elliptic model advanced for turbulent shear flows (He & Zhang, Phys. Rev. E, vol. 73, 055303) is valid for the present velocity field for all over the cell, i.e. the isocorrelation contours of the measured $C(r, \tau )$ have an elliptical curve shape and hence $C(r, \tau )$ can be related to $C({r}_{E} , 0)$ via ${ r}_{E}^{2} = (r\ensuremath{-} U\tau )^{2} + {V}^{2} {\tau }^{2} $ with $U$ and $V$ being two characteristic velocities. We further show that the fitted $U$ is proportional to the mean velocity of the flow, but the values of $V$ are larger than the theoretical predictions. Specifically, we focus on two representative regions in the cell: the region near the cell sidewall and the cell’s central region. It is found that $U$ and $V$ are approximately the same near the sidewall, while $U\simeq 0$ at the cell centre.


1998 ◽  
Vol 81 (4) ◽  
pp. 806-809 ◽  
Author(s):  
Kapil M. S. Bajaj ◽  
Jun Liu ◽  
Brian Naberhuis ◽  
Guenter Ahlers

2014 ◽  
Vol 762 ◽  
pp. 232-255 ◽  
Author(s):  
Susanne Horn ◽  
Olga Shishkina

AbstractWe consider rotating Rayleigh–Bénard convection of a fluid with a Prandtl number of $\mathit{Pr}=0.8$ in a cylindrical cell with an aspect ratio ${\it\Gamma}=1/2$. Direct numerical simulations (DNS) were performed for the Rayleigh number range $10^{5}\leqslant \mathit{Ra}\leqslant 10^{9}$ and the inverse Rossby number range $0\leqslant 1/\mathit{Ro}\leqslant 20$. We propose a method to capture regime transitions based on the decomposition of the velocity field into toroidal and poloidal parts. We identify four different regimes. First, a buoyancy-dominated regime occurring while the toroidal energy $e_{tor}$ is not affected by rotation and remains equal to that in the non-rotating case, $e_{tor}^{0}$. Second, a rotation-influenced regime, starting at rotation rates where $e_{tor}>e_{tor}^{0}$ and ending at a critical inverse Rossby number $1/\mathit{Ro}_{cr}$ that is determined by the balance of the toroidal and poloidal energy, $e_{tor}=e_{pol}$. Third, a rotation-dominated regime, where the toroidal energy $e_{tor}$ is larger than both $e_{pol}$ and $e_{tor}^{0}$. Fourth, a geostrophic regime for high rotation rates where the toroidal energy drops below the value for non-rotating convection.


2018 ◽  
Vol 858 ◽  
pp. 437-473 ◽  
Author(s):  
B. Favier ◽  
J. Purseed ◽  
L. Duchemin

We study the evolution of a melting front between the solid and liquid phases of a pure incompressible material where fluid motions are driven by unstable temperature gradients. In a plane-layer geometry, this can be seen as classical Rayleigh–Bénard convection where the upper solid boundary is allowed to melt due to the heat flux brought by the fluid underneath. This free-boundary problem is studied numerically in two dimensions using a phase-field approach, classically used to study the melting and solidification of alloys, which we dynamically couple with the Navier–Stokes equations in the Boussinesq approximation. The advantage of this approach is that it requires only moderate modifications of classical numerical methods. We focus on the case where the solid is initially nearly isothermal, so that the evolution of the topography is related to the inhomogeneous heat flux from thermal convection, and does not depend on the conduction problem in the solid. From a very thin stable layer of fluid, convection cells appear as the depth – and therefore the effective Rayleigh number – of the layer increases. The continuous melting of the solid leads to dynamical transitions between different convection cell sizes and topography amplitudes. The Nusselt number can be larger than its value for a planar upper boundary, due to the feedback of the topography on the flow, which can stabilize large-scale laminar convection cells.


1993 ◽  
Vol 04 (05) ◽  
pp. 993-1006 ◽  
Author(s):  
A. BARTOLONI ◽  
C. BATTISTA ◽  
S. CABASINO ◽  
P. S. PAOLUCCI ◽  
J. PECH ◽  
...  

In this paper we describe an implementation of the Lattice Boltzmann Equation method for fluid-dynamics simulations on the APE100 parallel computer. We have performed a simulation of a two-dimensional Rayleigh-Bénard convection cell. We have tested the theory proposed by Shraiman and Siggia for the scaling of the Nusselt number vs. Rayleigh number.


2018 ◽  
Vol 21 (6) ◽  
pp. 987-998 ◽  
Author(s):  
Daisuke Noto ◽  
Yuji Tasaka ◽  
Takatoshi Yanagisawa ◽  
Hyun Jin Park ◽  
Yuichi Murai

1998 ◽  
Vol 120 (4) ◽  
pp. 672-675
Author(s):  
Peter Vorobieff ◽  
Robert E. Ecke

We investigate convection in a cylindrical Rayleigh-Be´nard cell with radius-to-height ratio Γ = 1/2. The cell is subjected to impulsive spin-up about its vertical axis. We use TLC (thermochromic liquid crystal) imaging for temperature field measurements and PIV (particle image velocimetry) for velocity reconstruction of the transition in the range of Rayleigh numbers R from 5 × 107 to 5 × 108 and dimensionless rotation rates Ω from 0 up to 8 × 104. The initial (at rest) and the final (in steady rotation) states of the system are those of turbulent convection. The most persistent transient feature is a well-defined ring pattern characterized by a decrease in temperature, axial velocity directed downward and high azimuthal shear. The latter leads to formation of an azimuthally regular structure of Kelvin-Helmholz vortices. During the final stage of the transition, this vortical structure loses azimuthal regularity and an irregular pattern of vortices characteristic of turbulent rotating convection forms.


Sign in / Sign up

Export Citation Format

Share Document