Visco-plastic fluid displacements in near-vertical narrow eccentric annuli: prediction of travelling-wave solutions and interfacial instability

2004 ◽  
Vol 520 ◽  
pp. 343-377 ◽  
Author(s):  
S. PELIPENKO ◽  
I. A. FRIGAARD
2008 ◽  
Vol 605 ◽  
pp. 293-327 ◽  
Author(s):  
M. CARRASCO-TEJA ◽  
I. A. FRIGAARD ◽  
B. R. SEYMOUR ◽  
S. STOREY

We consider laminar displacement flows in narrow eccentric annuli, oriented horizontally, between two fluids of Herschel–Bulkley type, (i.e. including Newtonian, power-law and Bingham models). This situation is modelled via a Hele-Shaw approach. Whereas slumping and stratification would be expected in the absence of any imposed flow rate, for a displacement flow we show that there are often steady-state travelling wave solutions in this displacement. These may exist even at large eccentricities and for large density differences between the fluids. When heavy fluids displace light fluids, annular eccentricity opposes buoyancy and steady states are more prevalent than when light fluids displace heavy fluids. For large ratios of buoyancy forces to viscous forces we derive a lubrication-style displacement model. This simplification allows us to find necessary and sufficient conditions under which a displacement can be steady, which can be expressed conveniently in terms of a consistency ratio. It is interesting that buoyancy does not appear in the critical conditions for a horizontal well. Instead a competition between fluid rheologies and eccentricity is the determining factor. Buoyancy acts only to determine the axial length of the steady-state profile.


2020 ◽  
Author(s):  
Miftachul Hadi

We review the work of Ranjit Kumar, R S Kaushal, Awadhesh Prasad. The work is still in progress.


Author(s):  
Andronikos Paliathanasis ◽  
Genly Leon ◽  
P. G. L. Leach

Abstract We apply the Painlevé test for the Benney and the Benney–Gjevik equations, which describe waves in falling liquids. We prove that these two nonlinear 1 + 1 evolution equations pass the singularity test for the travelling-wave solutions. The algebraic solutions in terms of Laurent expansions are presented.


Sign in / Sign up

Export Citation Format

Share Document