scholarly journals An experimental investigation on Lagrangian correlations of small-scale turbulence at low Reynolds number

2007 ◽  
Vol 574 ◽  
pp. 405-427 ◽  
Author(s):  
MICHELE GUALA ◽  
ALEXANDER LIBERZON ◽  
ARKADY TSINOBER ◽  
WOLFGANG KINZELBACH

Lagrangian auto- and cross-correlation functions of the rate of strain s2, enstrophy ω2, their respective production terms −sijsjkski and ωiωjsij, and material derivatives, Ds2/Dt and Dω2/Dt are estimated using experimental results obtained through three-dimensional particle tracking velocimetry (three-dimensional-PTV) in homogeneous turbulence at Reλ=50. The autocorrelation functions are used to estimate the Lagrangian time scales of different quantities, while the cross-correlation functions are used to clarify some aspects of the interaction mechanisms between vorticity ω and the rate of strain tensor sij, that are responsible for the statistically stationary, in the Eulerian sense, levels of enstrophy and rate of strain in homogeneous turbulent flow. Results show that at the Reynolds number of the experiment these quantities exhibit different time scales, varying from the relatively long time scale of ω2 to the relatively shorter time scales of s2, ωiωjsij and −sijsjkski. Cross-correlation functions suggest that the dynamics of enstrophy and strain, in this flow, is driven by a set of different-time-scale processes that depend on the local magnitudes of s2 and ω2. In particular, there are indications that, in a statistical sense, (i) strain production anticipates enstrophy production in low-strain–low-enstrophy regions (ii) strain production and enstrophy production display high correlation in high-strain–high-enstrophy regions, (iii) vorticity dampening in high-enstrophy regions is associated with weak correlations between −sijsjkski and s2 and between −sijsjkski and Ds2/Dt, in addition to a marked anti-correlation between ωiωjsij and Ds2/Dt. Vorticity dampening in high-enstrophy regions is thus related to the decay of s2 and its production term, −sijsjkski.

2001 ◽  
Vol 427 ◽  
pp. 241-274 ◽  
Author(s):  
P. K. YEUNG

A study of the Lagrangian statistical properties of velocity and passive scalar fields using direct numerical simulations is presented, for the case of stationary isotropic turbulence with uniform mean scalar gradients. Data at higher grid resolutions (up to 5123 and Taylor-scale Reynolds number 234) allow an update of previous velocity results at lower Reynolds number, including intermittency and dimensionality effects on vorticity time scales. The emphasis is on Lagrangian scalar time series which are new to the literature and important for stochastic mixing models. The variance of the ‘total’ Lagrangian scalar value (ϕ˜+, combining contributions from both mean and fluctuations) grows with time, with the velocity–scalar cross-correlation function and fluid particle displacements playing major roles. The Lagrangian increment of ϕ˜+ conditioned upon velocity and scalar fluctuations is well represented by a linear regression model whose parameters depend on both Reynolds number and Schmidt number. The Lagrangian scalar fluctuation is non-Markovian and has a longer time scale than the velocity, which is due to the strong role of advective transport, and is in contrast to results in an Eulerian frame where the scalars have shorter time scales. The scalar dissipation is highly intermittent and becomes de-correlated in time more rapidly than the energy dissipation. Differential diffusion for scalars with Schmidt numbers between 1/8 and 1 is characterized by asymmetry in the two-scalar cross-correlation function, a shorter time scale for the difference between two scalars, as well as a systematic decrease in the Lagrangian coherency spectrum up to at least the Kolmogorov frequency. These observations are consistent with recent work suggesting that differential diffusion remains important in the small scales at high Reynolds number.


2021 ◽  
Author(s):  
Yash Lokare

A quantitative description of the violation of the second law of thermodynamics in relatively small classical systems and over short time scales comes from the fluctuation-dissipation theorem. It has been well established both theoretically and experimentally, the validity of the fluctuation theorem to small scale systems that are disturbed from their initial equilibrium states. Some experimental studies in the past have also explored the validity of the fluctuation theorem to nonequilibrium steady states at long time scales in the asymptotic limit. To this end, a theoretical and/or purely numerical model of the integral fluctuation theorem has been presented. An approximate general expression for the dissipation function has been derived for accelerated colloidal systems trapped/confined in power-law traps. Thereafter, a colloidal particle trapped in a harmonic potential (generated by an accelerating one-dimensional optical trap) and undergoing Brownian motion has been considered for the numerical study. A toy model of a quartic potential trap in addition to the harmonic trap has also been considered for the numerical study. The results presented herein show that the integral fluctuation theorem applies not only to equilibrium steady state distributions but also to nonequilibrium steady state distributions of colloidal systems in accelerated frames of reference over long time scales.


2007 ◽  
Vol 586 ◽  
pp. 59-81 ◽  
Author(s):  
SUSUMU GOTO ◽  
SHIGEO KIDA

The stretching rate, normalized by the reciprocal of the Kolmogorov time, of sufficiently extended material lines and surfaces in statistically stationary homogeneous isotropic turbulence depends on the Reynolds number, in contrast to the conventional picture that the statistics of material object deformation are determined solely by the Kolmogorov-scale eddies. This Reynolds-number dependence of the stretching rate of sufficiently extended material objects is numerically verified both in two- and three-dimensional turbulence, although the normalized stretching rate of infinitesimal material objects is confirmed to be independent of the Reynolds number. These numerical results can be understood from the following three facts. First, the exponentially rapid stretching brings about rapid multiple folding of finite-sized material objects, but no folding takes place for infinitesimal objects. Secondly, since the local degree of folding is positively correlated with the local stretching rate and it is non-uniformly distributed over finite-sized objects, the folding enhances the stretching rate of the finite-sized objects. Thirdly, the stretching of infinitesimal fractions of material objects is governed by the Kolmogorov-scale eddies, whereas the folding of a finite-sized material object is governed by all eddies smaller than the spatial extent of the objects. In other words, the time scale of stretching of infinitesimal fractions of material objects is proportional to the Kolmogorov time, whereas that of folding of sufficiently extended material objects can be as long as the turnover time of the largest eddies. The combination of the short time scale of stretching of infinitesimal fractions and the long time scale of folding of the whole object yields the Reynolds-number dependence. Movies are available with the online version of the paper.


2021 ◽  
Author(s):  
Yash Lokare

Abstract A quantitative description of the violation of the second law of thermodynamics in relatively small classical systems and over short time scales comes from the fluctuation-dissipation theorem. It has been well established both theoretically and experimentally, the validity of the fluctuation theorem to small scale systems that are disturbed from their initial equilibrium states. Some experimental studies in the past have also explored the validity of the fluctuation theorem to nonequilibrium steady states at long time scales in the asymptotic limit. To this end, a theoretical and/or purely numerical model of the integral fluctuation theorem has been presented. An approximate general expression for the dissipation function has been derived for accelerated colloidal systems trapped/confined in power-law traps. Thereafter, a colloidal particle trapped in a harmonic potential (generated by an accelerating one-dimensional optical trap) and undergoing Brownian motion has been considered for the numerical study. A toy model of a quartic potential trap in addition to the harmonic trap has also been considered for the numerical study. The results presented herein show that the integral fluctuation theorem applies not only to equilibrium steady state distributions but also to nonequilibrium steady state distributions of colloidal systems in accelerated frames of reference over long time scales.


2004 ◽  
Vol 18 (08) ◽  
pp. 1119-1159 ◽  
Author(s):  
BORIS V. FINE

The long-time behavior of the infinite temperature spin correlation functions describing the free induction decay in nuclear magnetic resonance and intermediate structure factors in inelastic neutron scattering is considered. These correlation functions are defined for one-, two- and three-dimensional infinite lattices of interacting spins, both classical and quantum. It is shown that, even though the characteristic time-scale of the long-time decay of the correlation functions considered is non-Markovian, the generic functional form of this decay is either simple exponential or exponential multiplied by cosine. This work contains (i) the summary of the existing experimental and numerical evidence of the above asymptotic behavior; (ii) theoretical explanation of this behavior; and (iii) semi-empirical analysis of various factors discriminating between the monotonic and the oscillatory long-time decays. The theory is based on a fairly strong conjecture that, as a result of chaos generated by spin dynamics, a Brownian-like Markovian description can be applied to the long-time properties of ensemble average quantities on a non-Markovian time-scale. The formalism resulting from that conjecture can be described as "correlated diffusion in finite volumes."


2019 ◽  
Vol 76 (5) ◽  
pp. 1265-1287 ◽  
Author(s):  
Arjun Jagannathan ◽  
Kraig Winters ◽  
Laurence Armi

Abstract Uniformly stratified flows approaching long and dynamically tall ridges develop two distinct flow components over disparate time scales. The fluid upstream and below a “blocking level” is stagnant in the limit of an infinite ridge and flows around the sides when the ridge extent is finite. The streamwise half-width of the obstacle at the blocking level arises as a natural inner length scale for the flow, while the excursion time over this half-width is an associated short time scale for the streamwise flow evolution. Over a longer time scale, low-level horizontal flow splitting leads to the establishment of an upstream layerwise potential flow beneath the blocking level. We demonstrate through numerical experiments that for sufficiently long ridges, crest control and streamwise asymmetry are seen on both the short and long time scales. On the short time scale, upstream blocking is established quickly and the flow is well described as a purely infinite-ridge overflow. Over the long time scale associated with flow splitting, low-level flow escapes around the sides, but the overflow continues to be hydraulically controlled and streamwise asymmetric in the neighborhood of the crest. We quantify this late-time overflow by estimating its volumetric transport and then briefly demonstrate how this approach can be extended to predict the overflow across nonuniform ridge shapes.


2020 ◽  
Vol 497 (1) ◽  
pp. 698-725 ◽  
Author(s):  
Sandro Tacchella ◽  
John C Forbes ◽  
Neven Caplar

ABSTRACT A key uncertainty in galaxy evolution is the physics regulating star formation, ranging from small-scale processes related to the life-cycle of molecular clouds within galaxies to large-scale processes such as gas accretion on to galaxies. We study the imprint of such processes on the time-variability of star formation with an analytical approach tracking the gas mass of galaxies (‘regulator model’). Specifically, we quantify the strength of the fluctuation in the star-formation rate (SFR) on different time-scales, i.e. the power spectral density (PSD) of the star-formation history, and connect it to gas inflow and the life-cycle of molecular clouds. We show that in the general case the PSD of the SFR has three breaks, corresponding to the correlation time of the inflow rate, the equilibrium time-scale of the gas reservoir of the galaxy, and the average lifetime of individual molecular clouds. On long and intermediate time-scales (relative to the dynamical time-scale of the galaxy), the PSD is typically set by the variability of the inflow rate and the interplay between outflows and gas depletion. On short time-scales, the PSD shows an additional component related to the life-cycle of molecular clouds, which can be described by a damped random walk with a power-law slope of β ≈ 2 at high frequencies with a break near the average cloud lifetime. We discuss star-formation ‘burstiness’ in a wide range of galaxy regimes, study the evolution of galaxies about the main sequence ridgeline, and explore the applicability of our method for understanding the star-formation process on cloud-scale from galaxy-integrated measurements.


2001 ◽  
Vol 115 (23) ◽  
pp. 10945-10954 ◽  
Author(s):  
Yuichi N. Ohshima ◽  
Koushi E. Hatakeyam ◽  
Motoi Satake ◽  
Yumi Homma ◽  
Ryosuke Washidzu ◽  
...  

Author(s):  
Yash Lokare

A quantitative description of the second law of thermodynamics in relatively small classical systems and over short time scales comes from the fluctuation-dissipation theorem. It has been well established both theoretically and experimentally, the validity of the fluctuation theorem to small scale systems that are disturbed from their initial equilibrium states. Some experimental studies in the past have also explored the validity of the fluctuation theorem to nonequilibrium steady states at long time scales in the asymptotic limit. To this end, a theoretical and/or purely numerical model of the integral fluctuation theorem has been presented. An approximate general expression for the dissipation function has been derived for accelerated colloidal systems trapped/confined in power-law traps. Thereafter, a colloidal particle trapped in a harmonic potential (generated by an accelerating one-dimensional optical trap) and undergoing Brownian motion has been considered for the numerical study. A toy model of a quartic potential trap in addition to the harmonic trap has also been considered for the numerical study. The results presented herein show that the integral fluctuation theorem applies not only to equilibrium steady state distributions but also to nonequilibrium steady state distributions of ideal colloidal systems in accelerated frames of reference over long time scales.


2019 ◽  
Vol 492 (2) ◽  
pp. 1914-1918
Author(s):  
Yury A Nagovitsyn ◽  
Aleksandra A Osipova

ABSTRACT The IDV index of geomagnetic activity is used by many researchers as a proxy of the interplanetary magnetic field (IMF) strength B. Using the original multiscale regression (MSR) method based on wavelet transformation, we obtained a long series of B values starting from 1845. Then, based on the new 2.0 versions of the sunspot number and group sunspot number and using MSR method and this series as a reference, we reconstructed IMF strength B starting from 1610. Further extension of the reconstruction is associated with radiocarbon reconstructions of solar activity at a time-scale of up to several millennia. It is shown that in the last 3200 yr the IMF strength has been experiencing a downward trend of −(0.39 ± 0.17) · 10−3 nT· yr−1.


Sign in / Sign up

Export Citation Format

Share Document