Transient inertial hydrodynamic interaction between two identical spheres settling at small Reynolds number

2008 ◽  
Vol 605 ◽  
pp. 263-279 ◽  
Author(s):  
B. U. FELDERHOF

The flow pattern generated by a sphere accelerated from rest by a small constant applied forceshows scaling behaviour at long times, as can be shown from the solution of the linearized Navier–Stokes equations. In the scaling regime the kinetic energy of the flow grows with thesquare root of time. For two distant settling spheres starting from rest the kinetic energy ofthe flow depends on the distance vector between centres; owing to interference of the flowpatterns. It is argued that this leads to relative motion of the two spheres. Thecorresponding interaction energy is calculated explicitly in the scaling regime.

Author(s):  
S. G. Rajeev

Here some solutions of Navier–Stokes equations are found.The flow of a fluid along a pipe (Poisseuille flow) and that between two rotating cylinders (Couette flow) are the simplest. In the limit of large viscosity (small Reynolds number) the equations become linear: Stokes equations. Flow past a sphere is solved in detail. It is used to calculate the drag on a sphere, a classic formula of Stokes. An exact solution of the Navier–Stokes equation describing a dissipating vortex is also found. It is seen that viscosity cannot be ignored at the boundary or at the core of vortices.


Author(s):  
S. G. Rajeev

When different layers of a fluid move at different velocities, there is some friction which results in loss of energy and momentum to molecular degrees of freedom. This dissipation is measured by a property of the fluid called viscosity. The Navier–Stokes (NS) equations are the modification of Euler’s equations that include this effect. In the incompressible limit, the NS equations have a residual scale invariance. The flow depends only on a dimensionless ratio (the Reynolds number). In the limit of small Reynolds number, the NS equations become linear, equivalent to the diffusion equation. Ideal flow is the limit of infinite Reynolds number. In general, the larger the Reynolds number, the more nonlinear (complicated, turbulent) the flow.


1973 ◽  
Vol 59 (2) ◽  
pp. 391-396 ◽  
Author(s):  
N. C. Freeman ◽  
S. Kumar

It is shown that, for a spherically symmetric expansion of a gas into a low pressure, the shock wave with area change region discussed earlier (Freeman & Kumar 1972) can be further divided into two parts. For the Navier–Stokes equation, these are a region in which the asymptotic zero-pressure behaviour predicted by Ladyzhenskii is achieved followed further downstream by a transition to subsonic-type flow. The distance of this final region downstream is of order (pressure)−2/3 × (Reynolds number)−1/3.


2014 ◽  
Vol 752 ◽  
pp. 602-625 ◽  
Author(s):  
Kengo Deguchi ◽  
Philip Hall

AbstractOur concern in this paper is with high-Reynolds-number nonlinear equilibrium solutions of the Navier–Stokes equations for boundary-layer flows. Here we consider the asymptotic suction boundary layer (ASBL) which we take as a prototype parallel boundary layer. Solutions of the equations of motion are obtained using a homotopy continuation from two known types of solutions for plane Couette flow. At high Reynolds numbers, it is shown that the first type of solution takes the form of a vortex–wave interaction (VWI) state, see Hall & Smith (J. Fluid Mech., vol. 227, 1991, pp. 641–666), and is located in the main part of the boundary layer. On the other hand, here the second type is found to support an equilibrium solution of the unit-Reynolds-number Navier–Stokes equations in a layer located a distance of $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}O(\ln \mathit{Re})$ from the wall. Here $\mathit{Re}$ is the Reynolds number based on the free-stream speed and the unperturbed boundary-layer thickness. The streaky field produced by the interaction grows exponentially below the layer and takes its maximum size within the unperturbed boundary layer. The results suggest the possibility of two distinct types of streaky coherent structures existing, possibly simultaneously, in disturbed boundary layers.


2021 ◽  
Vol 930 ◽  
Author(s):  
Kartik P. Iyer ◽  
Katepalli R. Sreenivasan ◽  
P.K. Yeung

Using direct numerical simulations performed on periodic cubes of various sizes, the largest being $8192^3$ , we examine the nonlinear advection term in the Navier–Stokes equations generating fully developed turbulence. We find significant dissipation even in flow regions where nonlinearity is locally absent. With increasing Reynolds number, the Navier–Stokes dynamics amplifies the nonlinearity in a global sense. This nonlinear amplification with increasing Reynolds number renders the vortex stretching mechanism more intermittent, with the global suppression of nonlinearity, reported previously, restricted to low Reynolds numbers. In regions where vortex stretching is absent, the angle and the ratio between the convective vorticity and solenoidal advection in three-dimensional isotropic turbulence are statistically similar to those in the two-dimensional case, despite the fundamental differences between them.


2021 ◽  
Vol 8 (3) ◽  
pp. 418-424
Author(s):  
Syed Fazuruddin ◽  
Seelam Sreekanth ◽  
G. Sankara Sekhar Raju

Incompressible 2-D Navier-stokes equations for various values of Reynolds number with and without partial slip conditions are studied numerically. The Lid-Driven cavity (LDC) with uniform driven lid problem is employed with vorticity - Stream function (VSF) approach. The uniform mesh grid is used in finite difference approximation for solving the governing Navier-stokes equations and developed MATLAB code. The numerical method is validated with benchmark results. The present work is focused on the analysis of lid driven cavity flow of incompressible fluid with partial slip conditions (imposed on side walls of the cavity). The fluid flow patterns are studied with wide range of Reynolds number and slip parameters.


1998 ◽  
Vol 120 (2) ◽  
pp. 257-262 ◽  
Author(s):  
Peter Gerlinger ◽  
Dieter Bru¨ggemann

A multigrid method for convergence acceleration is used for solving coupled fluid and turbulence transport equations. For turbulence closure a low-Reynolds-number q-ω turbulence model is employed, which requires very fine grids in the near wall regions. Due to the use of fine grids, convergence of most iterative solvers slows down, making the use of multigrid techniques especially attractive. However, special care has to be taken on the strong nonlinear turbulent source terms during restriction from fine to coarse grids. Due to the hyperbolic character of the governing equations in supersonic flows and the occurrence of shock waves, modifications to standard multigrid techniques are necessary. A simple and effective method is presented that enables the multigrid scheme to converge. A strong reduction in the required number of multigrid cycles and work units is achieved for different test cases, including a Mack 2 flow over a backward facing step.


Sign in / Sign up

Export Citation Format

Share Document