scholarly journals Drag and lift forces acting on a spherical gas bubble in homogeneous shear liquid flow

2009 ◽  
Vol 629 ◽  
pp. 173-193 ◽  
Author(s):  
KEN-ICHI SUGIOKA ◽  
SATORU KOMORI

Drag and lift forces acting on a spherical gas bubble in a homogeneous linear shear flow were numerically investigated by means of a three-dimensional direct numerical simulation (DNS) based on a marker and cell (MAC) method. The effects of fluid shear rate and particle Reynolds number on drag and lift forces acting on a spherical gas bubble were compared with those on a spherical inviscid bubble. The results show that the drag force acting on a spherical air bubble in a linear shear flow increases with fluid shear rate of ambient flow. The behaviour of the lift force on a spherical air bubble is quite similar to that on a spherical inviscid bubble, but the effects of fluid shear rate on the lift force acting on an air bubble in the linear shear flow become bigger than that acting on an inviscid bubble in the particle Reynolds number region of 1≤Rep≤300. The lift coefficient on a spherical gas bubble approaches the lift coefficient on a spherical water droplet in the linear shear air-flow with increase in the internal gas viscosity.

1999 ◽  
Vol 384 ◽  
pp. 183-206 ◽  
Author(s):  
RYOICHI KUROSE ◽  
SATORU KOMORI

The drag and lift forces acting on a rotating rigid sphere in a homogeneous linear shear flow are numerically studied by means of a three-dimensional numerical simulation. The effects of both the fluid shear and rotational speed of the sphere on the drag and lift forces are estimated for particle Reynolds numbers of 1[les ]Rep[les ]500.The results show that the drag forces both on a stationary sphere in a linear shear flow and on a rotating sphere in a uniform unsheared flow increase with increasing the fluid shear and rotational speed. The lift force on a stationary sphere in a linear shear flow acts from the low-fluid-velocity side to the high-fluid-velocity side for low particle Reynolds numbers of Rep<60, whereas it acts from the high-velocity side to the low-velocity side for high particle Reynolds numbers of Rep>60. The change of the direction of the lift force can be explained well by considering the contributions of pressure and viscous forces to the total lift in terms of flow separation. The predicted direction of the lift force for high particle Reynolds numbers is also examined through a visualization experiment of an iron particle falling in a linear shear flow of a glycerin solution. On the other hand, the lift force on a rotating sphere in a uniform unsheared flow acts in the same direction independent of particle Reynolds numbers. Approximate expressions for the drag and lift coefficients for a rotating sphere in a linear shear flow are proposed over the wide range of 1[les ]Rep[les ]500.


2007 ◽  
Vol 570 ◽  
pp. 155-175 ◽  
Author(s):  
KEN-ICHI SUGIOKA ◽  
SATORU KOMORI

Drag and lift forces acting on a spherical water droplet in a homogeneous linear shear air flow were studied by means of a three-dimensional direct numerical simulation based on a marker and cell (MAC) method. The effects of the fluid shear rate and the particle (droplet) Reynolds number on drag and lift forces acting on a spherical droplet were compared with those on a rigid sphere. The results show that the drag coefficient on a spherical droplet in a linear shear flow increases with increasing the fluid shear rate. The difference in the drag coefficient between a spherical droplet and a rigid sphere in a linear shear flow never exceeds 4%. The lift force acting on a spherical droplet changes its sign from a positive to a negative value at a particle Reynolds number of Rep ≃ 50 in a linear shear flow and it acts from the high-speed side to the low-speed side for Rep ≥ 50. The behaviour of the lift coefficient on a spherical droplet is similar to that on a stationary rigid sphere and the change of sign is caused by the decrease of the pressure lift. The viscous lift on a spherical droplet is smaller than that on a rigid sphere at the same Rep, whereas the pressure lift becomes larger. These quantitative differences are caused by the flow inside a spherical droplet.


1998 ◽  
Vol 368 ◽  
pp. 81-126 ◽  
Author(s):  
DOMINIQUE LEGENDRE ◽  
JACQUES MAGNAUDET

The three-dimensional flow around a spherical bubble moving steadily in a viscous linear shear flow is studied numerically by solving the full Navier–Stokes equations. The bubble surface is assumed to be clean so that the outer flow obeys a zero-shear-stress condition and does not induce any rotation of the bubble. The main goal of the present study is to provide a complete description of the lift force experienced by the bubble and of the mechanisms responsible for this force over a wide range of Reynolds number (0.1[les ]Re[les ]500, Re being based on the bubble diameter) and shear rate (0[les ]Sr[les ]1, Sr being the ratio between the velocity difference across the bubble and the relative velocity). For that purpose the structure of the flow field, the influence of the Reynolds number on the streamwise vorticity field and the distribution of the tangential velocities at the surface of the bubble are first studied in detail. It is shown that the latter distribution which plays a central role in the production of the lift force is dramatically dependent on viscous effects. The numerical results concerning the lift coefficient reveal very different behaviours at low and high Reynolds numbers. These two asymptotic regimes shed light on the respective roles played by the vorticity produced at the bubble surface and by that contained in the undisturbed flow. At low Reynolds number it is found that the lift coefficient depends strongly on both the Reynolds number and the shear rate. In contrast, for moderate to high Reynolds numbers these dependences are found to be very weak. The numerical values obtained for the lift coefficient agree very well with available asymptotic results in the low- and high-Reynolds-number limits. The range of validity of these asymptotic solutions is specified by varying the characteristic parameters of the problem and examining the corresponding evolution of the lift coefficient. The numerical results are also used for obtaining empirical correlations useful for practical calculations at finite Reynolds number. The transient behaviour of the lift force is then examined. It is found that, starting from the undisturbed flow, the value of the lift force at short time differs from its steady value, even when the Reynolds number is high, because the vorticity field needs a finite time to reach its steady distribution. This finding is confirmed by an analytical derivation of the initial value of the lift coefficient in an inviscid shear flow. Finally, a specific investigation of the evolution of the lift and drag coefficients with the shear rate at high Reynolds number is carried out. It is found that when the shear rate becomes large, i.e. Sr=O(1), a small but consistent decrease of the lift coefficient occurs while a very significant increase of the drag coefficient, essentially produced by the modifications of the pressure distribution, is observed. Some of the foregoing results are used to show that the well-known equality between the added mass coefficient and the lift coefficient holds only in the limit of weak shears and nearly steady flows.


2002 ◽  
Vol 473 ◽  
pp. 379-388 ◽  
Author(s):  
P. BAGCHI ◽  
S. BALACHANDAR

The lift forces on rigid spheres entrained in a vortex and a linear shear flow are computed using a direct numerical simulation. The sphere Reynolds number is in the range 10 to 100. The lift coefficient in a vortex is shown to be nearly two orders of magnitude higher than that in a shear flow. The inviscid mechanism is shown to be inadequate to account for the enhanced lift force. The effect of free rotation of the sphere is also shown to be too small to account for the enhanced lift force. Flow structure around the sphere is studied to explain the generation of the strong lift force in a vortex.


2021 ◽  
Vol 6 (10) ◽  
Author(s):  
Pengyu Shi ◽  
Roland Rzehak ◽  
Dirk Lucas ◽  
Jacques Magnaudet

2010 ◽  
Vol 657 ◽  
pp. 89-125 ◽  
Author(s):  
HYUNGOO LEE ◽  
S. BALACHANDAR

Recent research (Zeng, PhD thesis, 2007; Zeng et al., Phys. Fluids, vol. 21, 2009, art. no. 033302) has shown that both the shear- and wall-induced lift contributions on a particle sharply increase as the gap between the wall and the particle is decreased. Explicit expressions that are valid over a range of finite Re were obtained for the drag and lift forces in the limiting cases of a stationary particle in wall-bounded linear flow and of a particle translating parallel to a wall in a quiescent ambient. Here we consider the more general case of a translating and rotating particle in a wall-bounded linear shear flow where shear, translational and rotational effects superpose. We have considered a modest Reynolds number range of 1–100. Direct numerical simulations using immersed boundary method were performed to systematically figure out the characteristics of hydrodynamic forces on a finite-sized particle moving while almost in contact with a wall. We present composite correlation for the hydrodynamic forces which are in agreement with all the available low-Reynolds-number theories.


Author(s):  
M. R. Meigounpoory ◽  
A. Rahi ◽  
A. Mirbozorgi

The drag and lift forces acting on a rotating impenetrable spherical suspended nano-particle in a homogeneous uniform flow are numerically studied by means of a three-dimensional numerical simulation with slip boundary condition. The effects of both the slip coefficient and rotational speed of the nanosphere on the drag and lift forces are investigated for Reynolds numbers in the range of 0.1 < Re < 100. Increase of rotation increases the drag and lift force exerted by flow at the surface of nano-sphere. By increasing slip coefficient the values of drag and lift coefficients decreases. At full slip condition, rotation of the nano-sphere has not significant effects on the drag and lift coefficient values moreover the lift coefficient of flow around the rotating spherical particle will be vanished. Present numerical results at no-slip condition are in good agreements with certain results of flow around of rotating sphere.


2018 ◽  
Vol 27 (4) ◽  
pp. 474-488 ◽  
Author(s):  
A. A. Gavrilov ◽  
K. A. Finnikov ◽  
Ya. S. Ignatenko ◽  
O. B. Bocharov ◽  
R. May

Sign in / Sign up

Export Citation Format

Share Document