Turbulent plumes with heterogeneous chemical reaction on the surface of small buoyant droplets

2009 ◽  
Vol 642 ◽  
pp. 49-77 ◽  
Author(s):  
SILVANA S. S. CARDOSO ◽  
SEAN T. MCHUGH

A model is developed for a turbulent plume with heterogeneous chemical reaction rising in an unbounded environment. The chemical reaction, which may generate or deplete buoyancy in the plume, occurs at the interface between two phases, a continuous phase and a dispersed one. We study the case in which a buoyant reactant is released at the source and forms the dispersed phase, consisting of very small bubbles, droplets or particles. Once in contact with the ambient fluid, a first-order irreversible reaction takes place at the surface of the, for example, droplets. The behaviour of this plume in a uniform and stratified environment is examined. We show that the dynamics of a pure plume with such heterogeneous reaction is completely determined by the ratio of the environmental buoyancy frequency N and a frequency parameter associated with the chemical reaction, G. The group G is a measure of the ability of the reaction to generate buoyancy in the plume. In a uniform environment, the sign of parameter G fully determines the plume motion. When the reaction generates buoyancy (positive G) the motion is unbounded, whilst when reaction depletes buoyancy (negative G) the plume reaches a level of neutral buoyancy. A relation for this neutral buoyancy level as a function of the initial buoyancy flux of the plume and G is calculated. Our theoretical predictions compared well with experimental results using a plume of calcium carbonate particles descending in an acidic aqueous solution. In a stratified environment, the motion of the plume is always bounded, irrespective of the magnitude of G, and we determine the level of maximum buoyancy flux, as well as those of zero buoyancy and zero momentum as a function of N/G. Finally, our model is applied to study the dynamics of a localized release of carbon dioxide in the ocean.

2013 ◽  
Vol 716 ◽  
pp. 120-136 ◽  
Author(s):  
Mariana G. Domingos ◽  
Silvana S. S. Cardoso

AbstractTurbulent two-phase plumes consisting of a continuous phase of entrained fluid and a dispersed phase, in the form of buoyant droplets/bubbles, are investigated. Chemical reaction or dissolution causes both a decrease in the size of the droplets/bubbles and a change in the buoyancy of the plume. The behaviours of such a plume in environments with uniform and stratified density are considered. We show that the dynamics of the plume are determined by two dimensionless groups: $N/ T$ and $G/ T$. Here, $N$ is the buoyancy frequency of the environment, $G$ measures the ability of the reaction to change buoyancy and $T$ reflects the effect of reaction on the size of the droplets/bubbles. We identify four regimes of behaviour of a plume in a stratified environment depending on whether the dominant effect on buoyancy arises from reaction or stratification, and on the occurrence of either multiple or single zero-buoyancy levels. For a uniform environment, perturbation solutions for the fluxes of volume, momentum, buoyancy and chemical species as a function of ascent distance are obtained. We apply our findings to understand the dynamics of both of the cases of a release of methane and a release of carbon dioxide in the ocean. For a methane release in the Gulf of Mexico, the motion of the plume is shown to be controlled by external density stratification for a bubble diameter of methane above ${\sim }1$–2 mm. In the case of a carbon dioxide release in the Norwegian Sea, dissolution determines the motion of the plume when the bubble diameter is smaller than ${\sim }0. 5$–3.5 cm. In both scenarios, the plume releases seawater enriched with the chemical at multiple levels.


Sign in / Sign up

Export Citation Format

Share Document