Axially symmetric potential flow around a slender body

1967 ◽  
Vol 28 (1) ◽  
pp. 131-147 ◽  
Author(s):  
Richard A. Handelsman ◽  
Joseph B. Keller

Axially symmetric potential flow about an axially symmetric rigid body is considered. The potential due to the body is represented as a superposition of potentials of point sources distributed along a segment of the axis inside the body. The source strength distribution satisfies a linear integral equation. A complete uniform asymptotic expansion of its solution is obtained with respect to the slenderness ratio ε½, which is the maximum radius of the body divided by its length. The expansion contains integral powers of ε multiplied by powers of log ε. From it expansions of the potential, the virtual mass and the dipole moment of the body are obtained. The flow about the body in the presence of an axially symmetric stationary obstacle is also determined. The method of analysis involves a technique for the asymptotic solution of integral equations.

1970 ◽  
Vol 44 (3) ◽  
pp. 401-417 ◽  
Author(s):  
J. P. K. Tillett

This paper deals with Stokes flow due to a stationary axially symmetric slender body in a uniform stream, which may be either parallel or perpendicular to the axis of the body. The effect of the body is represented by distributions of singularities along a segment of its axis of symmetry. Systems of linear integral equations for these distributions are obtained, and the first few terms of uniformly valid (in the Stokes region) asymptotic expansions in the slenderness ratio are discussed. The leading terms yield the expected result that the drag on the body in a transverse stream is double that in an axial stream. The second approximation to the ratio of these two drags is also independent of the body shape.


1975 ◽  
Vol 67 (4) ◽  
pp. 817-827 ◽  
Author(s):  
James Geer

The general problem of potential flow past a slender body of revolution is considered. The flow incident on the body is described by an arbitrary potential function and hence the results presented here extend those obtained by Handels-man & Keller (1967 α). The part of the potential due to the presence of the body is represented as a superposition of potentials due to point singularities (sources, dipoles and higher-order singularities) distributed along a segment of the axis of the body inside the body. The boundary condition on the body leads to a linear integral equation for the density of the singularities. The complete uniform asymptotic expansion of the solution of this equation, as well as the extent of the distribution, is obtained using the method of Handelsman & Keller. The special case of transverse incident flow is considered in detail. Complete expansions for the dipole moment of the distribution and the virtual mass of the body are obtained. Some general comments on the method of Handelsman & Keller are given, and may be useful to others wishing to use their method.


1956 ◽  
Vol 9 (3) ◽  
pp. 128-131
Author(s):  
A. G. Mackie

In his book on Hydrodynamics, Lamb obtained a solution for the potential flow of an incompressible fluid through a circular hole in a plane wall. More recently Sneddon (Fourier Transforms, New York, 1951) obtained Lamb's solution by an elegant application of Hankel transforms.Since the streamlines in this solution are symmetric about the wall, it is not of particular physical interest. In this note, Sneddon's method is used to give a solution in which the fluid is infinite in extent on one side of the aperture but issues as a jet of finite diameter on the other side.


Author(s):  
I. H. Grundy

AbstractSteady potential flow about a thin wing, flying in air above a dynamic water surface, is analysed in the asymptotic limit as the clearance-to-length ratio tends to zero. This leads to a non-linear integral equation for the one-dimensional pressure distribution beneath the wing, which is solved numerically. Results are compared with established “rigid-ground” and “hydrostatic” theories. Short waves lead to complications, including non-uniqueness, in some parameter ranges.


1969 ◽  
Vol 36 (2) ◽  
pp. 265-288 ◽  
Author(s):  
John W. Miles

The uniform motion of a closed, axisymmetric body along the axis of an unbounded, rotating, inviscid, incompressible fluid is considered on Long's hypotheses that: the flow is steady; the flow is uniform far upstream of the body; the inertial waves excited by the body cannot propagate upstream. The appropriate similarity parameters arek, an inverse Rossby number based on the body length, and δ, the slenderness ratio of the body. It is conjectured that an upper bound to the parametric régime in which the solution implied by Long's hypotheses remains valid, saykδ≡k<kc, is determined by the first occurrence, with increasingk, of a local reversal of the flow.A general solution for the stream function is established in terms of an assumed distribution of dipoles along the axis of the body. The disturbance upstream of the body is found to be proportional to the product ofk2and the dipole moment (total dipole strength) and to fall off only as the inverse distance, as compared with the inverse cube of the distance for a potential flow. The corresponding wave drag is found to depend on the power spectrum of the dipole distribution in the axial wave-number interval (0,k) and to be a monotonically decreasing function of the axial velocity for fixed angular velocity. Asymptotic solutions for prescribed bodies are established in the following limits: (i)K→ 0 with δ fixed; (ii) δ → 0 withkfixed; (iii)k→ ∞ withkδfixed. Both the upstream disturbance and the wave drag in the limit (i) depend essentially on the dipole moment of the body with respect to a uniform, potential flow. The limit (ii) is analogous to conventional slender-body theory and yields a dipole density that is proportional to the cross-sectional area of the body. The limit (iii) leads to a singular integral equation that is solved to determinekcand the dipole moment for a slender body.The results are applied to a sphere and a slender ellipsoid. The upstream axial velocity and the drag coefficient based on Stewartson's results for a sphere are found to differ significantly from Maxworthy's (1969) measurements, presumably in consequence of viscous separation effects. Maxworthy's measured values of upstream axial velocity are found to agree with the theoretical values for an equivalent ellipsoid, based on the sphere plus its upstream wake, fork[lsim ]kc.


2014 ◽  
Vol 554 ◽  
pp. 717-723
Author(s):  
Reza Abbasabadi Hassanzadeh ◽  
Shahab Shariatmadari ◽  
Ali Chegeni ◽  
Seyed Alireza Ghazanfari ◽  
Mahdi Nakisa

The present study aims to investigate the optimized profile of the body through minimizing the Drag coefficient in certain Reynolds regime. For this purpose, effective aerodynamic computations are required to find the Drag coefficient. Then, the computations should be coupled thorough an optimization process to obtain the optimized profile. The aerodynamic computations include calculating the surrounding potential flow field of an object, calculating the laminar and turbulent boundary layer close to the object, and calculating the Drag coefficient of the object’s body surface. To optimize the profile, indirect methods are used to calculate the potential flow since the object profile is initially amorphous. In addition to the indirect methods, the present study has also used axial singularity method which is more precise and efficient compared to other methods. In this method, the body profile is not optimized directly. Instead, a sink-and-source singularity distribution is used on the axis to model the body profile and calculate the relevant viscose flow field.


Sign in / Sign up

Export Citation Format

Share Document