Survey on the Indirect Methods of Potential Flow Used for the Optimization of Airships Profile

2014 ◽  
Vol 554 ◽  
pp. 717-723
Author(s):  
Reza Abbasabadi Hassanzadeh ◽  
Shahab Shariatmadari ◽  
Ali Chegeni ◽  
Seyed Alireza Ghazanfari ◽  
Mahdi Nakisa

The present study aims to investigate the optimized profile of the body through minimizing the Drag coefficient in certain Reynolds regime. For this purpose, effective aerodynamic computations are required to find the Drag coefficient. Then, the computations should be coupled thorough an optimization process to obtain the optimized profile. The aerodynamic computations include calculating the surrounding potential flow field of an object, calculating the laminar and turbulent boundary layer close to the object, and calculating the Drag coefficient of the object’s body surface. To optimize the profile, indirect methods are used to calculate the potential flow since the object profile is initially amorphous. In addition to the indirect methods, the present study has also used axial singularity method which is more precise and efficient compared to other methods. In this method, the body profile is not optimized directly. Instead, a sink-and-source singularity distribution is used on the axis to model the body profile and calculate the relevant viscose flow field.

Author(s):  
Ahmad Fakheri

In thermal science courses, flow over curved objects, like cylinders or spheres are generally discussed qualitatively, followed by the presentation of numerical or experimental results for the drag coefficient, Nusselt number, and flow separation. Rarely, there is much discussion of how solutions are obtained. In this paper the flow separation is first introduced by solving the Falkner-Skan flow. The process for numerical solution of equations is presented to show that the flow separates at a plate angle of about −18°. Comparisons are drawn between this and flow over a cylinder. The non-similar boundary layer equations are then solved flow over a cylinder, using potential flow results for the velocity outside of the boundary layer. This solution shows that the flow separates at 103.5°, which is significantly more than the experimental value of 80°. Using a more realistic velocity for flow outside of the boundary layer, the numerical solution obtained predicts flow separation at an angle of 79°, which is close to the experimental results. All the solutions are obtained using spreadsheets that greatly simplify the analysis.


1960 ◽  
Vol 4 (03) ◽  
pp. 1-16
Author(s):  
Stavros Tsakonas ◽  
Winnifred R. Jacobs

Expressions are developed for wake fraction and thrust deduction due to the potential flow and to the boundary-layer effects for a fully-submerged prolate ellipsoid of revolution. The functional dependence of wake fraction and thrust deduction on axial-propeller clearance, body slenderness, after body geometry, and Reynolds number (scale effect) are exhibited for both potential and viscous-flow cases. Closed-form expressions are derived for the potential-flow case by representing the body by a line source-sink distribution and the propeller action by a sink disk. The boundary-layer effect is determined by Lighthill's method of equivalent sources distributed on the surface having strength proportional to the displacement thickness and its derivative. The wake is replaced by a cylinder of diameter equal to twice the displacement thickness at the stern. Although in practice the propeller is usually fully submerged in the wake of the hull, in this case the substitute cylinder has been shown by computation to be no wider than the hub diameter and thus the propeller is operating in a potential field. This consideration is fundamental to the construction of a possible mathematical model having the surface sources mentioned and an equivalent sink on the longitudinal axis whose position is determined on the basis of the velocity distribution in the wake. Computational work is carried out for a modification of the airship Akron. Four different methods, with various degrees of accuracy, are used for the evaluation of the boundary-layer growth in order to ascertain the degree of sensitivity of the thrust deduction and wake fraction to the boundary-layer development.


2011 ◽  
Vol 677 ◽  
pp. 179-203 ◽  
Author(s):  
I. JACOBI ◽  
B. J. McKEON

The zero-pressure-gradient turbulent boundary layer over a flat plate was perturbed by a short strip of two-dimensional roughness elements, and the downstream response of the flow field was interrogated by hot-wire anemometry and particle image velocimetry. Two internal layers, marking the two transitions between rough and smooth boundary conditions, are shown to represent the edges of a ‘stress bore’ in the flow field. New scalings, based on the mean velocity gradient and the third moment of the streamwise fluctuating velocity component, are used to identify this ‘stress bore’ as the region of influence of the roughness impulse. Spectral composite maps reveal the redistribution of spectral energy by the impulsive perturbation – in particular, the region of the near-wall peak was reached by use of a single hot wire in order to identify the significant changes to the near-wall cycle. In addition, analysis of the distribution of vortex cores shows a distinct structural change in the flow associated with the perturbation. A short spatially impulsive patch of roughness is shown to provide a vehicle for modifying a large portion of the downstream flow field in a controlled and persistent way.


2002 ◽  
Vol 470 ◽  
pp. 291-317 ◽  
Author(s):  
E. V. BULDAKOV ◽  
A. I. RUBAN

The paper is concerned with the interaction between the boundary layer on a smooth body surface and the outer inviscid compressible flow in the vicinity of a sonic point. First, a family of local self-similar solutions of the Kármán–Guderley equation describing the inviscid flow behaviour immediately outside the interaction region is analysed; one of them was found to be suitable for describing the boundary-layer separation. In this solution the pressure has a singularity at the sonic point with the pressure gradient on the body surface being inversely proportional to the cubic root dpw/dx ∼ (−x)−1/3 of the distance (−x) from the sonic point. This pressure gradient causes the boundary layer to interact with the inviscid part of the flow. It is interesting that the skin friction in the boundary layer upstream of the interaction region shows a characteristic logarithmic decay which determines an unusual behaviour of the flow inside the interaction region. This region has a conventional triple-deck structure. To study the interactive flow one has to solve simultaneously the Prandtl boundary-layer equations in the lower deck which occupies a thin viscous sublayer near the body surface and the Kármán–Guderley equations for the upper deck situated in the inviscid flow outside the boundary layer. In this paper a numerical solution of the interaction problem is constructed for the case when the separation region is entirely contained within the viscous sublayer and the inviscid part of the flow remains marginally supersonic. The solution proves to be non-unique, revealing a hysteresis character of the flow in the interaction region.


1979 ◽  
Vol 101 (3) ◽  
pp. 373-375
Author(s):  
M. L. Agarwal ◽  
P. K. Pande ◽  
Rajendra Prakash

The mean flow past a fence submerged in a turbulent boundary layer is numerically simulated. The governing equations have been simplified by neglecting the convective effects of turbulence and solved numerically using experimental boundary conditions. The information obtained includes the shape and size of the upstream and downstream separation bubbles and the streamline pattern in the entire flow field. General agreement between the simulated and the experimental flow field was found.


Sign in / Sign up

Export Citation Format

Share Document