singularity distribution
Recently Published Documents


TOTAL DOCUMENTS

33
(FIVE YEARS 3)

H-INDEX

7
(FIVE YEARS 0)

2021 ◽  
Vol 12 ◽  
Author(s):  
Luca Azzolin ◽  
Steffen Schuler ◽  
Olaf Dössel ◽  
Axel Loewe

In both clinical and computational studies, different pacing protocols are used to induce arrhythmia and non-inducibility is often considered as the endpoint of treatment. The need for a standardized methodology is urgent since the choice of the protocol used to induce arrhythmia could lead to contrasting results, e.g., in assessing atrial fibrillation (AF) vulnerabilty. Therefore, we propose a novel method—pacing at the end of the effective refractory period (PEERP)—and compare it to state-of-the-art protocols, such as phase singularity distribution (PSD) and rapid pacing (RP) in a computational study. All methods were tested by pacing from evenly distributed endocardial points at 1 cm inter-point distance in two bi-atrial geometries. Seven different atrial models were implemented: five cases without specific AF-induced remodeling but with decreasing global conduction velocity and two persistent AF cases with an increasing amount of fibrosis resembling different substrate remodeling stages. Compared with PSD and RP, PEERP induced a larger variety of arrhythmia complexity requiring, on average, only 2.7 extra-stimuli and 3 s of simulation time to initiate reentry. Moreover, PEERP and PSD were the protocols which unveiled a larger number of areas vulnerable to sustain stable long living reentries compared to RP. Finally, PEERP can foster standardization and reproducibility, since, in contrast to the other protocols, it is a parameter-free method. Furthermore, we discuss its clinical applicability. We conclude that the choice of the inducing protocol has an influence on both initiation and maintenance of AF and we propose and provide PEERP as a reproducible method to assess arrhythmia vulnerability.


2021 ◽  
Author(s):  
Luca Azzolin ◽  
Steffen Schuler ◽  
Axel Loewe ◽  
Olaf Dössel

AbstractIn both clinical and computational studies, different pacing protocols are used to induce arrhythmia and non-inducibility is often considered as the endpoint of treatment. The need for a standardized methodology is urgent since the choice of the protocol used to induce arrhythmia could lead to contrasting results, e.g., in assessing atrial fibrillation (AF) vulnerabilty. Therefore, we propose a novel method – pacing at the end of the effective refractory period (PEERP) – and compare it to state-of-the-art protocols such as phase singularity distribution (PSD) and rapid pacing (RP) in a computational study. All methods were tested by pacing from 227 evenly distributed endocardial points in a bi-atrial geometry. 6 different atrial models were implemented: 4 cases without specific AF-induced remodelling but with decreasing global conduction velocity and 2 persistent AF cases with an increasing amount of fibrosis resembling different substrate remodeling stages. Compared with PSD and RP, PEERP induced a larger variety of arrhythmia complexity requiring, on average, only 2.7 extra-stimuli and 3 s of simulation time to initiate reentry. Moreover, PEERP and PSD were the protocols which unveiled a larger number of areas vulnerable to sustain stable long living reentries compared to RP. Finally, PEERP can foster standardization and reproducibility, since, in contrast to the other protocols, it is a parameter-free method. Furthermore, we discuss its clinical applicability. We conclude that the choice of the inducing protocol has an influence on both initiation and maintenance of AF and we propose and provide PEERP as a reproducible method to assess arrhythmia vulnerability.


2016 ◽  
Vol 23 (4) ◽  
pp. 46-58 ◽  
Author(s):  
Hassan Ghassemi ◽  
Isar Ghamari ◽  
Arash Ashrafi

AbstractThis paper discusses the numerical evaluation of the hydrodynamic characteristics of submerged and surface piercing moving bodies. Generally, two main classes of potential methods are used for hydrodynamic characteristic analysis of steady moving bodies which are Rankine and Kelvin-Havelock singularity distribution. In this paper, the Kelvin- Havelock sources are used for simulating the moving bodies and then free surface wave patterns are obtained. Numerical evaluation of potential distribution of a Kelvin-Havelock source is completely presented and discussed. Numerical results are calculated and presented for a 2D cylinder, single source, two parallel moving source, sphere, ellipsoid and standard Wigley hull in different situation that show acceptable agreement with results of other literatures or experiments.


2014 ◽  
Vol 554 ◽  
pp. 717-723
Author(s):  
Reza Abbasabadi Hassanzadeh ◽  
Shahab Shariatmadari ◽  
Ali Chegeni ◽  
Seyed Alireza Ghazanfari ◽  
Mahdi Nakisa

The present study aims to investigate the optimized profile of the body through minimizing the Drag coefficient in certain Reynolds regime. For this purpose, effective aerodynamic computations are required to find the Drag coefficient. Then, the computations should be coupled thorough an optimization process to obtain the optimized profile. The aerodynamic computations include calculating the surrounding potential flow field of an object, calculating the laminar and turbulent boundary layer close to the object, and calculating the Drag coefficient of the object’s body surface. To optimize the profile, indirect methods are used to calculate the potential flow since the object profile is initially amorphous. In addition to the indirect methods, the present study has also used axial singularity method which is more precise and efficient compared to other methods. In this method, the body profile is not optimized directly. Instead, a sink-and-source singularity distribution is used on the axis to model the body profile and calculate the relevant viscose flow field.


2013 ◽  
Vol 444-445 ◽  
pp. 574-578
Author(s):  
Chu Tang ◽  
Guan Xin Hong

A numerical simulation method for the wind field over complex terrain is developed in this paper. The complex terrain is represented by a surface, which is established by the surface spline method basing on the contour line of the map. Then it is divided into panels containing vortex ring singularities. The singularity distribution is solved by combining with the potential flow theory and the boundary condition of terrain surface. Finally, the wind field is simulated by linear superposition of the uniform stream and the induced velocity of vortex rings. A numerical example is studied, and the result indicates that the method proposed in this paper could describe the terrain much more accurately and provide a reasonable result of wind field distribution, but has a simple and efficient procedure, which is suitable for the engineering use in flight dynamics.


2012 ◽  
Vol 39 (3) ◽  
pp. 255-289
Author(s):  
Kumar Srivastava ◽  
Ram Yadav ◽  
Supriya Yadav

In this paper, the problem of steady Stokes flow past dumbbell-shaped axially symmetric isolated body of revolution about its axis of symmetry is considered by utilizing a method (Datta and Srivastava, 1999) based on body geometry under the restrictions of continuously turning tangent on the boundary. The relationship between drag and moment is established in transverse flow situation. The closed form expression of Stokes drag is then calculated for dumbbell-shaped body in terms of geometric parameters b, c, d and a with the aid of this linear relation and the formula of torque obtained by (Chwang and Wu, part 1, 1974) with the use of singularity distribution along axis of symmetry. Drag coefficient and moment coefficient are defined in various forms in terms of dumbbell parameters. Their numerical values are calculated and depicted in respective graphs and compared with some known values.


2011 ◽  
Vol 52-54 ◽  
pp. 517-522 ◽  
Author(s):  
Yuan Ming Cheng

This study proposes a 3-axis AC servo motor parallel platform with intersecting rails. The 3-actuators are designed to be horizontally on the base platform with their extensions intersect in the base platform center. The forward kinematics, inverse kinematics and work space of this mechanism are established and the singularity distribution is investigated. Optimal maneuvering regions are recommended from the viewpoints of singularity and stiffness.


Sign in / Sign up

Export Citation Format

Share Document