On the stability of flow in an elliptic pipe which is nearly circular

1978 ◽  
Vol 87 (2) ◽  
pp. 233-241 ◽  
Author(s):  
A. Davey

The linear stability of Poiseuille flow in an elliptic pipe which is nearly circular is examined by regarding the flow as a perturbation of Poiseuille flow in a circular pipe. We show that the temporal damping rates of non-axisymmetric infinitesimal disturbances which are concentrated near the wall of the pipe are decreased by the ellipticity. In particular we estimate that if the length of the minor axis of the cross-section of the pipe is less than about 96 ½% of that of the major axis then the flow will be unstable and a critical Reynolds number will exist. Also we calculate estimates of the ellipticities which will produce critical Reynolds numbers ranging from 1000 upwards.

The stability of plane Poiseuille flow in a channel forced by a wavelike motion on one of the channel walls is investigated. The amplitude Є of this forcing is taken to be small. The most dangerous modes of forcing are identified and it is found in general the critical Reynolds number is changed by O (Є) 2 . However, we identify two particular modes of forcing which give rise to decrements of order Є 2/3 and Є in the critical Reynolds number. Some types of forcing are found to generate sub critical stable finite amplitude perturbations to plane Poiseuille flow. This contrasts with the unforced case where the only stable solution is the zero amplitude solution. The forcing also deforms the unstable subcritical limit cycle solution from its usual circular shape into a more complicated shape. This has an effect on the threshold amplitude ideas suggested by, for example, Meksyn & Stuart (1951). It is found that the phase of disturbances must also be considered when finding the amplitude dependent critical Reynolds numbers.


1968 ◽  
Vol 90 (1) ◽  
pp. 109-114 ◽  
Author(s):  
Ahmed R. Wazzan ◽  
T. Okamura ◽  
A. M. O. Smith

The theory of two-dimensional instability of laminar flow of water over solid surfaces is extended to include the effects of heat transfer. The equation that governs the stability of these flows to Tollmien-Schlichting disturbances is the Orr-Sommerfeld equation “modified” to include the effect of viscosity variation with temperature. Numerical solutions to this equation at high Reynolds numbers are obtained using a new method of integration. The method makes use of the Gram-Schmidt orthogonalization technique to obtain linearly independent solutions upon numerically integrating the “modified Orr-Sommerfeld” equation using single precision arithmetic. The method leads to satisfactory answers for Reynolds numbers as high as Rδ* = 100,000. The analysis is applied to the case of flow over both heated and cooled flat plates. The results indicate that heating and cooling of the wall have a large influence on the stability of boundary-layer flow in water. At a free-stream temperature of 60 deg F and wall temperatures of 60, 90, 120, 135, 150, 200, and 300deg F, the critical Reynolds numbers Rδ* are 520, 7200, 15200, 15600, 14800, 10250, and 4600, respectively. At a free-stream temperature of 200F and wall temperature of 60 deg F (cooled case), the critical Reynolds number is 151. Therefore, it is evident that a heated wall has a stabilizing effect, whereas a cooled wall has a destabilizing effect. These stability calculations show that heating increases the critical Reynolds number to a maximum value (Rδ* max = 15,700 at a temperature of TW = 130 deg F) but that further heating decreases the critical Reynolds number. In order to determine the influence of the viscosity derivatives upon the results, the critical Reynolds number for the heated case of T∞ = 40 and TW = 130 deg F was determined using (a) the Orr-Sommerfeld equation and (b) the present governing equation. The resulting critical Reynolds numbers are Rδ* = 140,000 and 16,200, respectively. Therefore, it is concluded that the terms pertaining to the first and second derivatives of the viscosity have a considerable destabilizing influence.


1975 ◽  
Vol 72 (4) ◽  
pp. 731-751 ◽  
Author(s):  
M. Nishioka ◽  
S. Iid A ◽  
Y. Ichikawa

Stability experiments were made on plane Poiseuille flow generated in a long channel of a rectangular cross-section with a width-to-depth ratio of 27·4. By reducing the background turbulence down to a level of 0·05 %, we succeeded in maintaining the flow laminar at Reynolds numbers up to 8000, which is much larger than the critical Reynolds number of the linear theory, about 6000. The downstream development of the sinusoidal disturbance introduced by the vibrating ribbon technique was studied in detail at various frequencies in the range of Reynolds number from 3000 to 7500. This paper presents the experimental results and clarifies the linear stability, the nonlinear subcritical instability and the breakdown leading to the transition.


2004 ◽  
Vol 126 (1) ◽  
pp. 10-13 ◽  
Author(s):  
Sedat Tardu

The electrostatic double layer (EDL) effect on the linear hydrodynamic stability of microchannel flows is investigated. It is shown that the EDL destabilizes the Poiseuille flow considerably. The critical Reynolds number decreases by a factor five when the non-dimensional Debye-Huckel parameter κ is around ten. Thus, the transition may be quite rapid for microchannels of a couple of microns heights in particular when the liquid contains a very small number of ions. The EDL effect disappears quickly for κ⩾150 corresponding typically to channels of heights 400 μm or larger. These results may explain why significantly low critical Reynolds numbers have been encountered in some experiments dealing with microchannel flows.


2014 ◽  
Vol 761 ◽  
pp. 62-104 ◽  
Author(s):  
Joris C. G. Verschaeve ◽  
Geir K. Pedersen

AbstractIn the present treatise, the stability of the boundary layer under solitary waves is analysed by means of the parabolized stability equation. We investigate both surface solitary waves and internal solitary waves. The main result is that the stability of the flow is not of parametric nature as has been assumed in the literature so far. Not only does linear stability analysis highlight this misunderstanding, it also gives an explanation why Sumer et al. (J. Fluid Mech., vol. 646, 2010, pp. 207–231), Vittori & Blondeaux (Coastal Engng, vol. 58, 2011, pp. 206–213) and Ozdemir et al. (J. Fluid Mech., vol. 731, 2013, pp. 545–578) each obtained different critical Reynolds numbers in their experiments and simulations. We find that linear instability is possible in the acceleration region of the flow, leading to the question of how this relates to the observation of transition in the acceleration region in the experiments by Sumer et al. or to the conjecture of a nonlinear instability mechanism in this region by Ozdemir et al. The key concept for assessment of instabilities is the integrated amplification which has not been employed for this kind of flow before. In addition, the present analysis is not based on a uniformization of the flow but instead uses a fully nonlinear description including non-parallel effects, weakly or fully. This allows for an analysis of the sensitivity with respect to these effects. Thanks to this thorough analysis, quantitative agreement between model results and direct numerical simulation has been obtained for the problem in question. The use of a high-order accurate Navier–Stokes solver is primordial in order to obtain agreement for the accumulated amplifications of the Tollmien–Schlichting waves as revealed in this analysis. An elaborate discussion on the effects of amplitudes and water depths on the stability of the flow is presented.


2017 ◽  
Vol 822 ◽  
pp. 813-847 ◽  
Author(s):  
Azan M. Sapardi ◽  
Wisam K. Hussam ◽  
Alban Pothérat ◽  
Gregory J. Sheard

This study seeks to characterise the breakdown of the steady two-dimensional solution in the flow around a 180-degree sharp bend to infinitesimal three-dimensional disturbances using a linear stability analysis. The stability analysis predicts that three-dimensional transition is via a synchronous instability of the steady flows. A highly accurate global linear stability analysis of the flow was conducted with Reynolds number $\mathit{Re}<1150$ and bend opening ratio (ratio of bend width to inlet height) $0.2\leqslant \unicode[STIX]{x1D6FD}\leqslant 5$. This range of $\mathit{Re}$ and $\unicode[STIX]{x1D6FD}$ captures both steady-state two-dimensional flow solutions and the inception of unsteady two-dimensional flow. For $0.2\leqslant \unicode[STIX]{x1D6FD}\leqslant 1$, the two-dimensional base flow transitions from steady to unsteady at higher Reynolds number as $\unicode[STIX]{x1D6FD}$ increases. The stability analysis shows that at the onset of instability, the base flow becomes three-dimensionally unstable in two different modes, namely a spanwise oscillating mode for $\unicode[STIX]{x1D6FD}=0.2$ and a spanwise synchronous mode for $\unicode[STIX]{x1D6FD}\geqslant 0.3$. The critical Reynolds number and the spanwise wavelength of perturbations increase as $\unicode[STIX]{x1D6FD}$ increases. For $1<\unicode[STIX]{x1D6FD}\leqslant 2$ both the critical Reynolds number for onset of unsteadiness and the spanwise wavelength decrease as $\unicode[STIX]{x1D6FD}$ increases. Finally, for $2<\unicode[STIX]{x1D6FD}\leqslant 5$, the critical Reynolds number and spanwise wavelength remain almost constant. The linear stability analysis also shows that the base flow becomes unstable to different three-dimensional modes depending on the opening ratio. The modes are found to be localised near the reattachment point of the first recirculation bubble.


1983 ◽  
Vol 133 ◽  
pp. 265-285 ◽  
Author(s):  
Günter Schewe

Force measurements were conducted in a pressurized wind tunnel from subcritical up to transcritical Reynolds numbers 2.3 × 104[les ]Re[les ] 7.1 × 106without changing the experimental arrangement. The steady and unsteady forces were measured by means of a piezobalance, which features a high natural frequency, low interferences and a large dynamic range. In the critical Reynolds-number range, two discontinuous transitions were observed, which can be interpreted as bifurcations at two critical Reynolds numbers. In both cases, these transitions are accompanied by critical fluctuations, symmetry breaking (the occurrence of a steady lift) and hysteresis. In addition, both transitions were coupled with a drop of theCDvalue and a jump of the Strouhal number. Similar phenomena were observed in the upper transitional region between the super- and the transcritical Reynolds-number ranges. The transcritical range begins at aboutRe≈ 5 × 106, where a narrow-band spectrum is formed withSr(Re= 7.1 × 106) = 0.29.


Author(s):  
A. Inasawa ◽  
K. Toda ◽  
M. Asai

Disturbance growth in the wake of a circular cylinder moving at a constant acceleration is examined experimentally. The cylinder is installed on a carriage moving in the still air. The results show that the critical Reynolds number for the onset of the global instability leading to a self-sustained wake oscillation increases with the magnitude of acceleration, while the Strouhal number of the growing disturbance at the critical Reynolds number is not strongly dependent on the magnitude of acceleration. It is also found that with increasing the acceleration, the Ka´rma´n vortex street remains two-dimensional even at the Reynolds numbers around 200 where the three-dimensional instability occurs to lead to the vortex dislocation in the case of cylinder moving at constant velocity or in the case of cylinder wake in the steady oncoming flow.


1974 ◽  
Vol 62 (4) ◽  
pp. 753-773 ◽  
Author(s):  
Christian Von Kerczek ◽  
Stephen H. Davis

The stability of the oscillatory Stokes layers is examined using two quasi-static linear theories and an integration of the full time-dependent linearized disturbance equations. The full theory predicts absolute stability within the investigated range and perhaps for all the Reynolds numbers. A given wavenumber disturbance of a Stokes layer is found to bemore stablethan that of the motionless state (zero Reynolds number). The quasi-static theories predict strong inflexional instabilities. The failure of the quasi-static theories is discussed.


The stability of fluid contained between concentric rotating cylinders has been investigated and it has been shown that, when only the inner cylinder rotates, the flow becomes unstable when a certain Reynolds number of the flow is exceeded. When the outer cylinder only is rotated, the flow is stable so far as disturbances of the type produced in the former case are concerned, but provided the Reynolds number of the flow exceeds a certain value, turbulence sets in. The object of the present experiments was partly to measure the torque reaction between two cylinders in the two cases in order to find the effect of centrifugal force on the turbulence, and partly to find the critical Reynolds numbers for the transition from stream-line to turbulent flow. The apparatus is shown diagrammatically in fig. 1.


Sign in / Sign up

Export Citation Format

Share Document