The Stability of Water Flow Over Heated and Cooled Flat Plates

1968 ◽  
Vol 90 (1) ◽  
pp. 109-114 ◽  
Author(s):  
Ahmed R. Wazzan ◽  
T. Okamura ◽  
A. M. O. Smith

The theory of two-dimensional instability of laminar flow of water over solid surfaces is extended to include the effects of heat transfer. The equation that governs the stability of these flows to Tollmien-Schlichting disturbances is the Orr-Sommerfeld equation “modified” to include the effect of viscosity variation with temperature. Numerical solutions to this equation at high Reynolds numbers are obtained using a new method of integration. The method makes use of the Gram-Schmidt orthogonalization technique to obtain linearly independent solutions upon numerically integrating the “modified Orr-Sommerfeld” equation using single precision arithmetic. The method leads to satisfactory answers for Reynolds numbers as high as Rδ* = 100,000. The analysis is applied to the case of flow over both heated and cooled flat plates. The results indicate that heating and cooling of the wall have a large influence on the stability of boundary-layer flow in water. At a free-stream temperature of 60 deg F and wall temperatures of 60, 90, 120, 135, 150, 200, and 300deg F, the critical Reynolds numbers Rδ* are 520, 7200, 15200, 15600, 14800, 10250, and 4600, respectively. At a free-stream temperature of 200F and wall temperature of 60 deg F (cooled case), the critical Reynolds number is 151. Therefore, it is evident that a heated wall has a stabilizing effect, whereas a cooled wall has a destabilizing effect. These stability calculations show that heating increases the critical Reynolds number to a maximum value (Rδ* max = 15,700 at a temperature of TW = 130 deg F) but that further heating decreases the critical Reynolds number. In order to determine the influence of the viscosity derivatives upon the results, the critical Reynolds number for the heated case of T∞ = 40 and TW = 130 deg F was determined using (a) the Orr-Sommerfeld equation and (b) the present governing equation. The resulting critical Reynolds numbers are Rδ* = 140,000 and 16,200, respectively. Therefore, it is concluded that the terms pertaining to the first and second derivatives of the viscosity have a considerable destabilizing influence.

1978 ◽  
Vol 87 (2) ◽  
pp. 233-241 ◽  
Author(s):  
A. Davey

The linear stability of Poiseuille flow in an elliptic pipe which is nearly circular is examined by regarding the flow as a perturbation of Poiseuille flow in a circular pipe. We show that the temporal damping rates of non-axisymmetric infinitesimal disturbances which are concentrated near the wall of the pipe are decreased by the ellipticity. In particular we estimate that if the length of the minor axis of the cross-section of the pipe is less than about 96 ½% of that of the major axis then the flow will be unstable and a critical Reynolds number will exist. Also we calculate estimates of the ellipticities which will produce critical Reynolds numbers ranging from 1000 upwards.


The stability of plane Poiseuille flow in a channel forced by a wavelike motion on one of the channel walls is investigated. The amplitude Є of this forcing is taken to be small. The most dangerous modes of forcing are identified and it is found in general the critical Reynolds number is changed by O (Є) 2 . However, we identify two particular modes of forcing which give rise to decrements of order Є 2/3 and Є in the critical Reynolds number. Some types of forcing are found to generate sub critical stable finite amplitude perturbations to plane Poiseuille flow. This contrasts with the unforced case where the only stable solution is the zero amplitude solution. The forcing also deforms the unstable subcritical limit cycle solution from its usual circular shape into a more complicated shape. This has an effect on the threshold amplitude ideas suggested by, for example, Meksyn & Stuart (1951). It is found that the phase of disturbances must also be considered when finding the amplitude dependent critical Reynolds numbers.


1983 ◽  
Vol 133 ◽  
pp. 265-285 ◽  
Author(s):  
Günter Schewe

Force measurements were conducted in a pressurized wind tunnel from subcritical up to transcritical Reynolds numbers 2.3 × 104[les ]Re[les ] 7.1 × 106without changing the experimental arrangement. The steady and unsteady forces were measured by means of a piezobalance, which features a high natural frequency, low interferences and a large dynamic range. In the critical Reynolds-number range, two discontinuous transitions were observed, which can be interpreted as bifurcations at two critical Reynolds numbers. In both cases, these transitions are accompanied by critical fluctuations, symmetry breaking (the occurrence of a steady lift) and hysteresis. In addition, both transitions were coupled with a drop of theCDvalue and a jump of the Strouhal number. Similar phenomena were observed in the upper transitional region between the super- and the transcritical Reynolds-number ranges. The transcritical range begins at aboutRe≈ 5 × 106, where a narrow-band spectrum is formed withSr(Re= 7.1 × 106) = 0.29.


1976 ◽  
Vol 77 (1) ◽  
pp. 81-104 ◽  
Author(s):  
D. Corner ◽  
D. J. R. Houston ◽  
M. A. S. Ross

Using the Orr-Sommerfeld equation with the wavenumber as the eigenvalue, a search for higher eigenstates in the stability theory of the Blasius boundary layer has revealed the existence of a number of viscous states in addition to the long established fundamental state. The viscous states are discrete, belong to two series, and are all heavily damped in space. Within the limits of the investigation the number of viscous states existing in the layer increases as the Reynolds number and the angular frequency of the perturbation increase. It is suggested that the viscous eigenstates may be responsible for the excitation of some boundary-layer disturbances by disturbances in the free stream.


1971 ◽  
Vol 50 (4) ◽  
pp. 689-703 ◽  
Author(s):  
Steven A. Orszag

The Orr-Sommerfeld equation is solved numerically using expansions in Chebyshev polynomials and the QR matrix eigenvalue algorithm. It is shown that results of great accuracy are obtained very economically. The method is applied to the stability of plane Poiseuille flow; it is found that the critical Reynolds number is 5772·22. It is explained why expansions in Chebyshev polynomials are better suited to the solution of hydrodynamic stability problems than expansions in other, seemingly more relevant, sets of orthogonal functions.


Author(s):  
A. Inasawa ◽  
K. Toda ◽  
M. Asai

Disturbance growth in the wake of a circular cylinder moving at a constant acceleration is examined experimentally. The cylinder is installed on a carriage moving in the still air. The results show that the critical Reynolds number for the onset of the global instability leading to a self-sustained wake oscillation increases with the magnitude of acceleration, while the Strouhal number of the growing disturbance at the critical Reynolds number is not strongly dependent on the magnitude of acceleration. It is also found that with increasing the acceleration, the Ka´rma´n vortex street remains two-dimensional even at the Reynolds numbers around 200 where the three-dimensional instability occurs to lead to the vortex dislocation in the case of cylinder moving at constant velocity or in the case of cylinder wake in the steady oncoming flow.


The stability of fluid contained between concentric rotating cylinders has been investigated and it has been shown that, when only the inner cylinder rotates, the flow becomes unstable when a certain Reynolds number of the flow is exceeded. When the outer cylinder only is rotated, the flow is stable so far as disturbances of the type produced in the former case are concerned, but provided the Reynolds number of the flow exceeds a certain value, turbulence sets in. The object of the present experiments was partly to measure the torque reaction between two cylinders in the two cases in order to find the effect of centrifugal force on the turbulence, and partly to find the critical Reynolds numbers for the transition from stream-line to turbulent flow. The apparatus is shown diagrammatically in fig. 1.


1975 ◽  
Vol 72 (4) ◽  
pp. 731-751 ◽  
Author(s):  
M. Nishioka ◽  
S. Iid A ◽  
Y. Ichikawa

Stability experiments were made on plane Poiseuille flow generated in a long channel of a rectangular cross-section with a width-to-depth ratio of 27·4. By reducing the background turbulence down to a level of 0·05 %, we succeeded in maintaining the flow laminar at Reynolds numbers up to 8000, which is much larger than the critical Reynolds number of the linear theory, about 6000. The downstream development of the sinusoidal disturbance introduced by the vibrating ribbon technique was studied in detail at various frequencies in the range of Reynolds number from 3000 to 7500. This paper presents the experimental results and clarifies the linear stability, the nonlinear subcritical instability and the breakdown leading to the transition.


2004 ◽  
Vol 126 (1) ◽  
pp. 10-13 ◽  
Author(s):  
Sedat Tardu

The electrostatic double layer (EDL) effect on the linear hydrodynamic stability of microchannel flows is investigated. It is shown that the EDL destabilizes the Poiseuille flow considerably. The critical Reynolds number decreases by a factor five when the non-dimensional Debye-Huckel parameter κ is around ten. Thus, the transition may be quite rapid for microchannels of a couple of microns heights in particular when the liquid contains a very small number of ions. The EDL effect disappears quickly for κ⩾150 corresponding typically to channels of heights 400 μm or larger. These results may explain why significantly low critical Reynolds numbers have been encountered in some experiments dealing with microchannel flows.


1994 ◽  
Vol 268 ◽  
pp. 71-88 ◽  
Author(s):  
Mahmoud Hamadiche ◽  
Julian Scott ◽  
Denis Jeandel

In this study of the temporal stability of Jeffery–Hamel flow, the critical Reynolds number based on the volume flux, Rc, and that based on the axial velocity, Rec, are computed. It is found that both critical Reynolds numbers decrease very rapidly when the half-angle of the channel, α, increases, such that the quantity αRc remains very nearly constant and αRecis a nearly linear function of α. For a short channel there can be more than one value of the critical Reynolds number. A fully nonlinear analysis, for Re close to the critical value, indicates that the loss of stability is supercritical. The resulting asymmetric oscillatory solutions show staggered arrays of vortices positioned along the channel.


Sign in / Sign up

Export Citation Format

Share Document