The response of a turbulent boundary layer to lateral divergence

1979 ◽  
Vol 94 (2) ◽  
pp. 243-268 ◽  
Author(s):  
A. J. Smits ◽  
J. A. Eaton ◽  
P. Bradshaw

Measurements have been made in the flow over an axisymmetric cylinder-flare body, in which the boundary layer developed in axial flow over a circular cylinder before diverging over a conical flare. The lateral divergence, and the concave curvature in the transition section between the cylinder and the flare, both tend to destabilize the turbulence. Well downstream of the transition section, the changes in turbulence structure are still significant and can be attributed to lateral divergence alone. The results confirm that lateral divergence alters the structural parameters in much the same way as longitudinal curvature, and can be allowed for by similar empirical formulae. The interaction between curvature and divergence effects in the transition section leads to qualitative differences between the behaviour of the present flow, in which the turbulence intensity is increased everywhere, and the results of Smits, Young & Bradshaw (1979) for a two-dimensional flow with the same curvature but no divergence, in which an unexpected collapse of the turbulence occurred downstream of the curved region.

1976 ◽  
Vol 74 (1) ◽  
pp. 113-128 ◽  
Author(s):  
Noor Afzal ◽  
R. Narasimha

A constant-pressure axisymmetric turbulent boundary layer along a circular cylinder of radiusais studied at large values of the frictional Reynolds numbera+(based upona) with the boundary-layer thickness δ of ordera. Using the equations of mean motion and the method of matched asymptotic expansions, it is shown that the flow can be described by the same two limit processes (inner and outer) as are used in two-dimensional flow. The condition that the two expansions match requires the existence, at the lowest order, of a log region in the usual two-dimensional co-ordinates (u+,y+). Examination of available experimental data shows that substantial log regions do in fact exist but that the intercept is possibly not a universal constant. Similarly, the solution in the outer layer leads to a defect law of the same form as in two-dimensional flow; experiment shows that the intercept in the defect law depends on δ/a. It is concluded that, except in those extreme situations wherea+is small (in which case the boundary layer may not anyway be in a fully developed turbulent state), the simplest analysis of axisymmetric flow will be to use the two-dimensional laws with parameters that now depend ona+or δ/aas appropriate.


This paper considers the two-dimensional flow past a circular cylinder immersed in a uniform stream, when the cylinder rotates about its axis so fast that separation in suppressed. The solution of the flow in the boundary layer on the cylinder is obtained in the form of a power series in the ratio of the stream velocity to the cylinder's peripheral velocity, and expressions are deduced for the value of the circulation and the torque on the cylinder. The terms calculated explicitly are sufficient to give reliable numerical values over the whole range of rotational speeds for which the postulate of non-separating flow is justifiable. The previously accepted theory, due to Prandtl, predicted that the circulation should not exceed a certain limit, while the present theory indicates that the circulation increases indefinitely with increase of rotaional speed. Strong arguments against the older theory are put forward, but the experimental evidence available is inconclusive.


1958 ◽  
Vol 2 (04) ◽  
pp. 33-51
Author(s):  
Yun-Sheng Yu

Tests made on the turbulent boundary layer on a circular cylinder in axial flow at zero pressure gradient are described. From the measurements, similarity laws of the velocity profile are formulated, and various boundary-layer characteristics are evaluated and compared with the flatplate results. It is found that the effect of transverse curvature is to increase the surface shearing stress and to decrease the boundary-layer thickness, and that the latter variation is more pronounced than the former.


1979 ◽  
Vol 101 (3) ◽  
pp. 521-525 ◽  
Author(s):  
R. E. Mayle ◽  
M. F. Blair ◽  
F. C. Kopper

Heat transfer measurements for a turbulent boundary layer on a convex and concave, constant-temperature surface are presented. The heat transferred on the convex surface was found to be less than that for a flat surface, while the heat transferred to the boundary layer on the concave surface was greater. It was also found that the heat transferred on the convex surface could be determined by using an existing two-dimensional finite difference boundary layer program modified to take into account the effect of streamline curvature on the turbulent shear stress and heat flux, but that the heat transferred on the concave surface could not be calculated. The latter result is attributed to the transition from a two-dimensional flow to one which contained streamwise, Taylor-Go¨rtler type vortices.


1972 ◽  
Vol 23 (1) ◽  
pp. 1-6 ◽  
Author(s):  
B R Bostock ◽  
W A Mair

SummaryMeasurements in two-dimensional flow on rectangular cylinders confirm earlier work of Nakaguchi et al in showing a maximum drag coefficient when the height h of the section (normal to the stream) is about 1.5 times the width d. Reattachment on the sides of the cylinder occurs only for h/d < 0.35.For cylinders of D-shaped section (Fig 1) the pressure distribution on the curved surface and the drag are considerably affected by the state of the boundary layer at separation, as for a circular cylinder. The lift is positive when the separation is turbulent and negative when it is laminar. It is found that simple empirical expressions for base pressure or drag, based on known values for the constituent half-bodies, are in general not satisfactory.


2000 ◽  
Vol 424 ◽  
pp. 127-167 ◽  
Author(s):  
J.-Y. VINÇONT ◽  
S. SIMOËNS ◽  
M. AYRAULT ◽  
J. M. WALLACE

Simultaneous measurements of the velocity and scalar concentration fields have been made in the plume emitting from a two-dimensional line source at the wall. The source is one obstacle height, h, downstream of a two-dimensional square obstacle located on the wall of a turbulent boundary layer. These measurements were made in two fluid media: water and air. In both media particle image velocimetry (PIV) was used for the velocity field measurements. For the scalar concentration measurements laser-induced uorescence (LIF) was used for the water flow and Mie scattering diffusion (MSD) for the air flow. Profiles of the mean and root-mean-square streamwise and wall-normal velocity components, Reynolds shear stress and mean and root-mean-square scalar concentration were determined at x = 4h and 6h downstream of the obstacle in the recirculation region and above it in the mixing region. At these streamwise stations the scalar fluxes, uc and vc, were also determined from the simultaneous velocity and scalar concentration field data. Both of these fluxes change sign from negative to positive with increasing distance from the wall in the recirculating region at 4h.A conditional analysis of the data was carried out by sorting them into the eight categories (octants) given by the sign combinations of the three variables: ±u, ±v and ±c. The octants with combinations of these three variables that correspond to types of scalar concentration flux motions that can be approximated by mean gradient scalar transport models are the octants that make the dominant contributions to uc and vc. However, in the recirculating zone, counter-gradient transport type motions also make significant contributions. Based on this conditional analysis, second-order mean gradient models of the scalar and the momentum uxes were constructed; they compare well to the measured values at 4h and 6h, particularly for the streamwise scalar flux, uc.Additional measurements of the velocity and concentration fields were made further downstream of the reattachment location in the wake region of the air flow. The mean velocity deficit profile determined from these measurements at x = 20h compares quite well to a similarity solution profile obtained by Counihan, Hunt & Jackson (1974). Their analysis was extended in the present investigation to the concentration field. The similarity solution obtained for the mean concentration compares well to profiles measured at x = 12h, 15h, and 20h, up to about three obstacle heights above the wall.


1967 ◽  
Vol 34 (1) ◽  
pp. 237-238 ◽  
Author(s):  
G. N. V. Rao

An attempt is made to develop a law of the wall for a thick axisymmetric turbulent boundary layer in which the sublayer thickness is comparable to the radius of transverse curvature. Examination of the equations of motion in the viscous sublayer suggests a law similar to that in two-dimensional flow. Available experimental information is consistent with this law, but the structure of turbulence in such thick axisymmetric boundary layers would seem to need further study.


Sign in / Sign up

Export Citation Format

Share Document