Computation of the Turbulent Boundary Layer on a Long Circular Cylinder in Axial Flow with a Vorticity Boundary Condition

2006 ◽  
pp. 561-566
Author(s):  
Milton Woods ◽  
Max Bull
1979 ◽  
Vol 94 (2) ◽  
pp. 243-268 ◽  
Author(s):  
A. J. Smits ◽  
J. A. Eaton ◽  
P. Bradshaw

Measurements have been made in the flow over an axisymmetric cylinder-flare body, in which the boundary layer developed in axial flow over a circular cylinder before diverging over a conical flare. The lateral divergence, and the concave curvature in the transition section between the cylinder and the flare, both tend to destabilize the turbulence. Well downstream of the transition section, the changes in turbulence structure are still significant and can be attributed to lateral divergence alone. The results confirm that lateral divergence alters the structural parameters in much the same way as longitudinal curvature, and can be allowed for by similar empirical formulae. The interaction between curvature and divergence effects in the transition section leads to qualitative differences between the behaviour of the present flow, in which the turbulence intensity is increased everywhere, and the results of Smits, Young & Bradshaw (1979) for a two-dimensional flow with the same curvature but no divergence, in which an unexpected collapse of the turbulence occurred downstream of the curved region.


1958 ◽  
Vol 2 (04) ◽  
pp. 33-51
Author(s):  
Yun-Sheng Yu

Tests made on the turbulent boundary layer on a circular cylinder in axial flow at zero pressure gradient are described. From the measurements, similarity laws of the velocity profile are formulated, and various boundary-layer characteristics are evaluated and compared with the flatplate results. It is found that the effect of transverse curvature is to increase the surface shearing stress and to decrease the boundary-layer thickness, and that the latter variation is more pronounced than the former.


1984 ◽  
Vol 27 (232) ◽  
pp. 2142-2151 ◽  
Author(s):  
Takao KAWAMURA ◽  
Munehiko HIWADA ◽  
Toshiharu HIBINO ◽  
Ikuo MABUCHI ◽  
Masaya KUMADA

1977 ◽  
Vol 99 (3) ◽  
pp. 486-493 ◽  
Author(s):  
O. Gu¨ven ◽  
V. C. Patel ◽  
C. Farell

A simple analytical model for two-dimensional mean flow at very large Reynolds numbers around a circular cylinder with distributed roughness is presented and the results of the theory are compared with experiment. The theory uses the wake-source potential-flow model of Parkinson and Jandali together with an extension to the case of rough-walled circular cylinders of the Stratford-Townsend theory for turbulent boundary-layer separation. In addition, a semi-empirical relation between the base-pressure coefficient and the location of separation is used. Calculation of the boundary-layer development, needed as part of the theory, is accomplished using an integral method, taking into account the influence of surface roughness on the laminar boundary layer and transition as well as on the turbulent boundary layer. Good agreement with experiment is shown by the results of the theory. The significant effects of surface roughness on the mean-pressure distribution on a circular cylinder at large Reynolds numbers and the physical mechanisms giving rise to these effects are demonstrated by the model.


1976 ◽  
Vol 27 (3) ◽  
pp. 217-228 ◽  
Author(s):  
Noor Afzal ◽  
K P Singh

SummaryIn an axisymmetric turbulent boundary layer along a circular cylinder at constant pressure, measurements have been made of mean velocity profile and turbulence characteristics: longitudinal velocity fluctuations, Reynolds shear stress, transverse correlation and spectrum. It has been found that the qualitative behaviour of an axisymmetric turbulent boundary layer is similar to that of a two-dimensional boundary layer in the wall region, where as in the outer region the effects of transverse curvature are observed.


Sign in / Sign up

Export Citation Format

Share Document