Thermocapillary convection in a rectangular cavity: asymptotic theory and numerical simulation

1983 ◽  
Vol 130 (-1) ◽  
pp. 347 ◽  
Author(s):  
M. Strani ◽  
R. Piva ◽  
G. Graziani
Author(s):  
Zhifei Guo ◽  
Peiqing Liu ◽  
Jin Zhang ◽  
Hao Guo

This paper is aimed at researching the interaction between aeroacoustic noise radiated from a rectangular cavity (gear bay) and from landing gear. It is a complicated flow-induced noise problem, involving the nonlinear, unsteady evolution of the turbulent structure inside the airflow bypassing the landing gear and the cavity. The generation and radiation mechanism of aeroacoustic noise are also concerned. In fact, it is a problem about the nonlinear interaction between the vortices shedding from the boundary layer of bluff bodies and the cavity-limited shear layer. To simplify this issue, a two-wheel landing gear named LAGOON is chosen as the landing gear model. The unsteady flow field and aerodynamic noise from it is simulated by applying the commercial software ANSYS Fluent. Good agreement is achieved between the numerical simulation and wind tunnel measurements in terms of the aerodynamic and aeroacoustic results. According to the size of LAGOON, a simple rectangular cavity is designed as the landing gear bay. Both the cavity combined with LAGOON and the cavity alone are simulated and compared. The results show that under the blocking effect of a strut, most small pieces of vortices at the trailing edge of the cavity bottom would dissipate rather than move forward along with the backflow, leading to the correlation of cavity resonance being more contrasting and increasing its amplitude. The blockage effect induced by rear wall could also enhance the turbulence kinetic energy at the wake of the strut, thus increasing the low-frequency noise radiated from the strut and cavity.


Author(s):  
Wanyuan Shi ◽  
Nobuyuki Oshima ◽  
Nobuyuki Imaishi

Thermocapillary convection in a shallow annular pool (depth d = 1 mm) of silicone oil (0.65 cSt, Pr = 6.7), heated from the inner wall, is investigated by numerical simulations. Under a fixed value of temperature difference between the outer and inner walls, surface temperature gradient in the inner heated pool is about 10% higher than that in the outer heated pool. Accordingly, the critical temperature difference for the incipience of HTW (ΔTc = 4.58K) is smaller than that (ΔTc = 5.0K) in the outer heated pool. Numerical simulations indicate that two groups of HTW, propagating in opposite azimuthal directions to each other, coexist and produce interference patterns in the inner heated pool. Rotation of the pool around its axis gives no significant influence on the behavior of HTW in the inner heated pool. The characteristics of HTW are discussed in contrast with those in the outer heated pool.


Sign in / Sign up

Export Citation Format

Share Document