Numerical Simulation of Thermocapillary Convection in an Annular Pool of Silicone Oil Heated From Inner Wall

Author(s):  
Wanyuan Shi ◽  
Nobuyuki Oshima ◽  
Nobuyuki Imaishi

Thermocapillary convection in a shallow annular pool (depth d = 1 mm) of silicone oil (0.65 cSt, Pr = 6.7), heated from the inner wall, is investigated by numerical simulations. Under a fixed value of temperature difference between the outer and inner walls, surface temperature gradient in the inner heated pool is about 10% higher than that in the outer heated pool. Accordingly, the critical temperature difference for the incipience of HTW (ΔTc = 4.58K) is smaller than that (ΔTc = 5.0K) in the outer heated pool. Numerical simulations indicate that two groups of HTW, propagating in opposite azimuthal directions to each other, coexist and produce interference patterns in the inner heated pool. Rotation of the pool around its axis gives no significant influence on the behavior of HTW in the inner heated pool. The characteristics of HTW are discussed in contrast with those in the outer heated pool.

2006 ◽  
Vol 2 (S239) ◽  
pp. 80-82 ◽  
Author(s):  
F. Kupka ◽  
H. J. Muthsam

AbstractWe introduce an extended 3D numerical simulation study of Reynolds stress models of stellar convection and probe fluxes as well as mean temperature gradient profiles.


2015 ◽  
Vol 64 (14) ◽  
pp. 140202
Author(s):  
Wang Fei ◽  
Peng Lan ◽  
Zhang Quan-Zhuang ◽  
Liu Jia

2006 ◽  
Vol 294 (2) ◽  
pp. 474-485 ◽  
Author(s):  
Wanyuan Shi ◽  
Michael K. Ermakov ◽  
Nobuyuki Imaishi

2013 ◽  
Vol 13 (9) ◽  
pp. 2223-2238 ◽  
Author(s):  
A. Boilley ◽  
J.-F. Mahfouf

Abstract. The Nice Côte d'Azur international airport is subject to horizontal low-level wind shears. Detecting and predicting these hazards is a major concern for aircraft security. A measurement campaign took place over the Nice airport in 2009 including 4 anemometers, 1 wind lidar and 1 wind profiler. Two wind shear events were observed during this measurement campaign. Numerical simulations were carried out with Meso-NH in a configuration compatible with near-real time applications to determine the ability of the numerical model to predict these events and to study the meteorological situations generating an horizontal wind shear. A comparison between numerical simulation and the observation dataset is conducted in this paper.


2003 ◽  
Author(s):  
B. X. Wang ◽  
H. Li ◽  
X. F. Peng ◽  
L. X. Yang

The development of a numerical model for analyzing the effect of the nano-particles’ Brownian motion on the heat transfer is described. By using the Maxwell velocity distribution relations to calculate the most possible velocity of fluid molecules at certain temperature gradient location around the nano-particle, the interaction between fluid molecules and one single nano-particle is analyzed and calculated. Based on this, a syntonic system is proposed and the coupled effect that Brownian motion of nano-particles has on fluid molecules is simulated. This is used to formulate a reasonable analytic method, facilitating laboratory study. The results provide the essential features of the heat transfer process, contributed by micro-convection to be considered.


Author(s):  
Anahita Ayasoufi ◽  
Theo G. Keith ◽  
Ramin K. Rahmani

An improvement is introduced to the conservation element and solution element (CE/SE) phase change scheme presented previously. The improvement addresses a well known weakness in numerical simulations of the enthalpy method when the Stefan number, (the ratio of sensible to latent heat) is small (less than 0.1). Behavior of the improved scheme, at the limit of small Stefan numbers, is studied and compared with that of the original scheme. It is shown that high dissipative errors, associated with small Stefan numbers, do not occur using the new scheme.


Sign in / Sign up

Export Citation Format

Share Document