Numerical simulation of Marangoni convection in a shallow rectangular cavity with a linear solutal boundary condition

Author(s):  
Jian-Gao Zhang ◽  
Yasunori Okano ◽  
Sadik Dost
2012 ◽  
Vol 591-593 ◽  
pp. 1734-1738
Author(s):  
Chun Yan Huang ◽  
Fan Jiang

In order to study the influence of pulsating blood flow to robot and blood vessel, UDF programming of the inlet velocity is defined as the boundary condition, and the model simulate the turbulent blood flow. Moreover, in this situation, this paper analyzes the influence caused by blood parameters for the biggest surface pressure on robot. The results are showed that the variation of pressure and velocity is different on different position at 0.08s and 0.27s, and the surface pressure of the robot become greater by the increase of blood density or viscosity.


Author(s):  
Zhifei Guo ◽  
Peiqing Liu ◽  
Jin Zhang ◽  
Hao Guo

This paper is aimed at researching the interaction between aeroacoustic noise radiated from a rectangular cavity (gear bay) and from landing gear. It is a complicated flow-induced noise problem, involving the nonlinear, unsteady evolution of the turbulent structure inside the airflow bypassing the landing gear and the cavity. The generation and radiation mechanism of aeroacoustic noise are also concerned. In fact, it is a problem about the nonlinear interaction between the vortices shedding from the boundary layer of bluff bodies and the cavity-limited shear layer. To simplify this issue, a two-wheel landing gear named LAGOON is chosen as the landing gear model. The unsteady flow field and aerodynamic noise from it is simulated by applying the commercial software ANSYS Fluent. Good agreement is achieved between the numerical simulation and wind tunnel measurements in terms of the aerodynamic and aeroacoustic results. According to the size of LAGOON, a simple rectangular cavity is designed as the landing gear bay. Both the cavity combined with LAGOON and the cavity alone are simulated and compared. The results show that under the blocking effect of a strut, most small pieces of vortices at the trailing edge of the cavity bottom would dissipate rather than move forward along with the backflow, leading to the correlation of cavity resonance being more contrasting and increasing its amplitude. The blockage effect induced by rear wall could also enhance the turbulence kinetic energy at the wake of the strut, thus increasing the low-frequency noise radiated from the strut and cavity.


1986 ◽  
Vol 1 (20) ◽  
pp. 5
Author(s):  
Michael H. Chen

A two dimensional numerical longwave model using an appropriate open sea boundary condition has been developed. The use of the open-sea boundary condition makes it possible to simulate longwave propagation using a smaller region without covering the entire ocean. The numerical model is used to predict the arrival time of tsunamis resulting from the 1964 Alaskan earthquake at various stations with reasonable success.


2011 ◽  
Vol 101-102 ◽  
pp. 197-201 ◽  
Author(s):  
Zhen Gyu Zheng ◽  
Ren Xian Li

This paper utilized the Boundary Element Method (BEM) combined with the Computational Fluid Dynamics (CFD) based on Lighthill’s analogy in the high-speed train model, and converted the fluctuating flow pressure near the vehicle’s surface into the dipole source boundary condition in acoustics grid, eventually succeeded in completing the numerical simulation of aerodynamic noise field outside the high-speed train by introducing the dipole source boundary condition into the train BEM model. The results show that the main aerodynamic noise controlling area is 15-20 meters away from the track center line in the horizontal direction, and the Sound Press Level (SPL) is 63-72dB.


Sign in / Sign up

Export Citation Format

Share Document