Trapping of water waves above a round sill

1983 ◽  
Vol 132 ◽  
pp. 105-118 ◽  
Author(s):  
Yuriko Renardy

The three-dimensional problem of wave trapping above a submerged round sill was first analysed by Longuet-Higgins on the basis of a linear shallow-water theory. The large responses predicted by the theory were, however, not well borne out by the experiments of Barnard, Pritchard & Provis, and this has motivated a more detailed study of the problem. A full linear theory for both inviscid and weakly viscous fluid, without any shallow-water assumptions, is presented here. It reveals important limitations on the use of shallow-water theory and the reasons for them. In particular, while the qualitative features of wave trapping are similar to those of shallow-water theory, the nearly resonant frequencies differ significantly, and, since the resonances are narrow, the observed amplitudes at a given frequency differ greatly. The geometry is strongly indicative of long waves, and the dispersion relation appears quite consistent with that, but the part of the motion at wavenumbers that are not small has, despite the small amplitude, a substantial effect on the response to excitation.

1968 ◽  
Vol 31 (4) ◽  
pp. 779-788 ◽  
Author(s):  
J. E. Ffowcs Williams ◽  
D. L. Hawkings

Small amplitude waves on a shallow layer of water are studied from the point of view used in aerodynamic sound theory. It is shown that many aspects of the generation and propagation of water waves are similar to those of sound waves in air. Certain differences are also discussed. It is concluded that shallow water simulation can be employed in the study of some aspects of aerodynamically generated sound.


2018 ◽  
Vol 15 (03) ◽  
pp. 1850017 ◽  
Author(s):  
Aly R. Seadawy

The problem formulations of models for three-dimensional weakly nonlinear shallow water waves regime in a stratified shear flow with a free surface are studied. Traveling wave solutions are generated by deriving the nonlinear higher order of nonlinear evaluation equations for the free surface displacement. We obtain the velocity potential and pressure fluid in the form of traveling wave solutions of the obtained nonlinear evaluation equation. The obtained solutions and the movement role of the waves of the exact solutions are new travelling wave solutions in different and explicit form such as solutions (bright and dark), solitary wave, periodic solitary wave elliptic function solutions of higher-order nonlinear evaluation equation.


2019 ◽  
Vol 871 ◽  
pp. 350-376 ◽  
Author(s):  
Agnès Maurel ◽  
Kim Pham ◽  
Jean-Jacques Marigo

We study the propagation of water waves over a ridge structured at the subwavelength scale using homogenization techniques able to account for its finite extent. The calculations are conducted in the time domain considering the full three-dimensional problem to capture the effects of the evanescent field in the water channel over the structured ridge and at its boundaries. This provides an effective two-dimensional wave equation which is a classical result but also non-intuitive transmission conditions between the region of the ridge and the surrounding regions of constant immersion depth. Numerical results provide evidence that the scattering properties of a structured ridge can be strongly influenced by the evanescent fields, a fact which is accurately captured by the homogenized model.


1958 ◽  
Vol 4 (1) ◽  
pp. 97-109 ◽  
Author(s):  
G. F. Carrier ◽  
H. P. Greenspan

In this paper, we investigate the behaviour of a wave as it climbs a sloping beach. Explicit solutions of the equations of the non-linear inviscid shallow-water theory are obtained for several physically interesting wave-forms. In particular it is shown that waves can climb a sloping beach without breaking. Formulae for the motions of the instantaneous shoreline as well as the time histories of specific wave-forms are presented.


2020 ◽  
Vol 142 (6) ◽  
Author(s):  
C. Y. Wang

Abstract The classical theory of small amplitude shallow water waves is applied to regular polygonal basins. The natural frequencies of the basins are related to the eigenvalues of the Helmholtz equation. Exact solutions are presented for triangular, square, and circular basins while pentagonal, hexagonal, and octagonal basins are solved, for the first time, by an efficient Ritz method. The first five eigenvalues of each basin are tabulated and the corresponding mode shapes are discussed. Tileability conditions are presented. Some modes (eigenmodes) can be tiled into larger domains.


Open Physics ◽  
2021 ◽  
Vol 19 (1) ◽  
pp. 808-818
Author(s):  
Usman Younas ◽  
Aly R. Seadawy ◽  
Muhammad Younis ◽  
Syed T. R. Rizvi ◽  
Saad Althobaiti

Abstract The shallow water wave model is one of the completely integrable models illustrating many physical problems. In this article, we investigate new exact wave structures to Kadomtsev–Petviashvili–Benjamin–Bona–Mahony and the Benney–Luke equations which explain the behavior of waves in shallow water. The exact structures are expressed in the shapes of hyperbolic, singular periodic, rational as well as solitary, singular, shock, shock-singular solutions. An efficient computational strategy namely modified direct algebraic method is employed to construct the different shapes of wave structures. Moreover, by fixing parameters, the graphical representations of some solutions are plotted in terms of three-dimensional, two-dimensional and contour plots, which explain the physical movement of the attained results. The accomplished results show that the applied computational technique is valid, proficient, concise and can be applied in more complicated phenomena.


1969 ◽  
Vol 36 (1) ◽  
pp. 75-85 ◽  
Author(s):  
Chia-Shun Yih

Under the assumption that the horizontal scales of the flow of a stratified fluid are much greater than the vertical scale, it can be shown that the pressure distribution in the fluid is nearly hydrostatic and that the solution for steady flows can be reduced to the solution of a non-linear partial differential equation with only horizontal co-ordinates as the space variables. The theory built on the basic assumption is the shallow-water theory for stratified fluids. Transformations are explicitly given with which a class of solutions for steady three-dimensional flows of a fluid of arbitrary stratification, continuous or discontinuous, issuing from a large reservoir can be found from a corresponding solution for a homogeneous fluid, provided a free surface is present and the shallow-water theory is applicable. A few examples of exact solutions according to the shallow-water theory are given and the parallel flow in a horizontal canal issuing from a large reservoir with the same horizontal bottom, which has some bearing on previous works on stratified flows, is discussed. But it is emphasized that the class is a very special one and that there are other solutions not belonging to this class. The conditions under which a solution belonging to this class is valid are discussed.


Author(s):  
Anna Kalogirou ◽  
Onno Bokhove ◽  
David Ham

We consider a comprehensive mathematical and numerical strategy to couple water-wave motion with rigid ship dynamics using variational principles. We present a methodology that applies to three-dimensional potential flow water waves and ship dynamics. For simplicity, in this paper we demonstrate the method for shallow-water waves coupled to buoy motion in two dimensions, the latter being the symmetric motion of a crosssection of a ship. The novelty in the presented model is that it employs a Lagrange multiplier to impose a physical restriction on the water height under the buoy in the form of an inequality constraint. A system of evolution equations can be obtained from the model and consists of the classical shallow-water equations for shallow, incompressible and irrotational waves, and relevant equations for the dynamics of the wave-energy buoy. One of the advantages of the variational approach followed is that, when combined with symplectic integrators, it eliminates any numerical damping and preserves the discrete energy; this is confirmed in our numerical results.


Sign in / Sign up

Export Citation Format

Share Document