The inertial draining of a thin fluid layer between parallel plates with a constant normal force. Part 2. Boundary layer and exact numerical solutions

1985 ◽  
Vol 156 (-1) ◽  
pp. 479 ◽  
Author(s):  
C. J. Lawrence ◽  
Y. Kuang ◽  
S. Weinbaum
1992 ◽  
Vol 9 (3) ◽  
pp. 150-158
Author(s):  
Jeong Jin Hong ◽  
Jae Hun Chun ◽  
Seung-Man Yang

2013 ◽  
Vol 48 (2) ◽  
pp. 211-222 ◽  
Author(s):  
E. A. Batyaev ◽  
T. I. Khabakhpasheva

2018 ◽  
Vol 387 ◽  
pp. 461-473 ◽  
Author(s):  
K. Gangadhar ◽  
D. Vijaya Kumar ◽  
S. Mohammed Ibrahim ◽  
Oluwole Daniel Makinde

In this study we use a new spectral relaxation method to investigate an axisymmetric law laminar boundary layer flow of a viscous incompressible non-Newtonian Eyring-Powell fluid and heat transfer over a heated disk with thermal radiation and Newtonian heating. The transformed boundary layer equations are solved numerically using the spectral relaxation method that has been proposed for the solution of nonlinear boundary layer equations. Numerical solutions are obtained for the local wall temperature, the local skin friction coefficient, as well as the velocity and temperature profiles. We show that the proposed technique is an efficient numerical algorithm with assured convergence that serves as an alternative to common numerical methods for solving nonlinear boundary value problems. We show that the convergence rate of the spectral relaxation method is significantly improved by using method in conjunction with the successive over-relaxation method. It is observed that CPU time is reduced in SOR method compare with SRM method.


1994 ◽  
Vol 6 (11) ◽  
pp. 3510-3512 ◽  
Author(s):  
John M. Budzinski ◽  
Robert F. Benjamin ◽  
Jeffrey W. Jacobs

2004 ◽  
Vol 126 (1) ◽  
pp. 32-41 ◽  
Author(s):  
B. W. van Oudheusden

The relation between velocity and enthalpy in steady boundary layer flow is known as the Crocco relation. It describes that for an adiabatic wall the total enthalpy remains constant throughout the boundary layer, when the Prandtl number (Pr) is one, irrespective of pressure gradient and compressibility. A generalization of the Crocco relation for Pr near one is obtained from a perturbation approach. In the case of constant-property flow an analytic expression is found, representing a first-order extension of the standard Crocco relation and confirming the asymptotic validity of the square-root dependence of the recovery factor on Prandtl number. The particular subject of the present study is the effect of compressibility on the extended Crocco relation and, hence, on the thermal recovery in laminar flows. A perturbation analysis for constant Pr reveals two additional mechanisms of compressibility effects in the extended Crocco relation, which are related to the viscosity law and to the pressure gradient. Numerical solutions for (quasi-)self-similar as well as non-similar boundary layers are presented to evaluate these effects quantitatively.


Author(s):  
Abdul Rahman Mohd Kasim ◽  
Hussein Ali Mohammed Al-Sharifi ◽  
Nur Syamilah Arifin ◽  
Mohd Zuki Salleh ◽  
Sharidan Shafie

2021 ◽  
Vol 926 ◽  
Author(s):  
Bhargav Rallabandi ◽  
Jens Eggers ◽  
Miguel Angel Herrada ◽  
Howard A. Stone

We consider the translation of a rigid, axisymmetric, tightly fitting object through a cylindrical elastic tube filled with viscous fluid, using a combination of theory and direct numerical simulations. The intruding object is assumed to be wider than the undeformed tube radius, forcing solid–solid contact in the absence of relative motion. The motion of the object establishes a thin fluid film that lubricates this contact. Our theory couples lubrication theory to a geometrically nonlinear membrane description of the tube's elasticity, and applies to a slender intruding object and a thin tube with negligible bending rigidity. We show using asymptotic and numerical solutions of the theory, that the thickness of the thin fluid film scales with the square root of the relative speed for small speeds, set by a balance of hoop stresses, membrane tension and fluid pressure. While membrane tension is relatively small at the entrance of the film, it dominates near the exit and produces undulations of the film thickness, even in the limit of vanishing speeds and slender objects. We find that the drag force on the intruding object depends on the slope of its surface at the entrance to the thin fluid film, and scales as the square root of the relative speed. The predictions of the lubricated membrane theory for the shape of the film and the force on the intruder are in quantitative agreement with three-dimensional direct numerical simulations of the coupled fluid–elastic problem.


2018 ◽  
Vol 75 (4) ◽  
pp. 1231-1241 ◽  
Author(s):  
Richard Rotunno ◽  
George H. Bryan

Abstract Laboratory observations of the leeside hydraulic jump indicate it consists of a statistically stationary turbulent motion in an overturning wave. From the point of view of the shallow-water equations (SWE), the hydraulic jump is a discontinuity in fluid-layer depth and velocity at which kinetic energy is dissipated. To provide a deeper understanding of the leeside hydraulic jump, three-dimensional numerical solutions of the Navier–Stokes equations (NSE) are carried out alongside SWE solutions for nearly identical physical initial-value problems. Starting from a constant-height layer flowing over a two-dimensional obstacle at constant speed, it is demonstrated that the SWE solutions form a leeside discontinuity owing to the collision of upstream-moving characteristic curves launched from the obstacle. Consistent with the SWE solution, the NSE solution indicates the leeside hydraulic jump begins as a steepening of the initially horizontal density interface. Subsequently, the NSE solution indicates overturning of the density interface and a transition to turbulence. Analysis of the initial-value problem in these solutions shows that the tendency to form either the leeside height–velocity discontinuity in the SWE or the overturning density interface in the exact NSE is a feature of the inviscid, nonturbulent fluid dynamics. Dissipative turbulent processes associated with the leeside hydraulic jump are a consequence of the inviscid fluid dynamics that initiate and maintain the locally unstable conditions.


Sign in / Sign up

Export Citation Format

Share Document