Fluctuations in wall-shear stress and pressure at low streamwise wavenumbers in turbulent boundary-layer flow

1991 ◽  
Vol 225 ◽  
pp. 545-555 ◽  
Author(s):  
D. M. Chase

Turbulent boundary-layer fluctuations in the incompressive domain are expressed in terms of fluctuating velocity-product 'sources’ in order to elucidate relative characteristics of fluctuating wall-shear stress and pressure in the subconvective range of streamwise wavenumbers. Appropriate viscous wall conditions are applied, and results are obtained to lowest order in this Strouhal-scaled wavenumber which serves as the expansion parameter. The spectral amplitudes of pressure and of the shear stress component directed along the wavevector both contain additive terms proportional to source integrals with exponential wall-distance weighting characteristic respectively of the irrotational and the rotational fields. At low wavenumbers, barring unexpected relative smallness of the pertinent boundary-layer source term, the rotational terms become dominant. There the wall pressure and shear-stress component have spectra that approach the same non-vanishing, wavevector-white but generally viscous-scale-dependent level and are totally coherent with phase difference ½π. The other, irrotational contributions to the shear-stress and pressure amplitudes likewise bear a simple and previously known, generally wavevector– and frequency-dependent, ratio to one another. In an inviscid limit this contribution to the pressure amplitude reduces to the one obtained previously from inviscid treatments. A representative class of models is introduced for the source spectrum, and the resulting rotational contribution to the spectral density of wall pressure and K-aligned shear stress at low (but incompressive) wavenumbers is estimated. It is suggested that this contribution may predominate and account for measured low-wavenumber levels of wall pressure.

Author(s):  
Kevin T. Rosenberg ◽  
Subrahmanyam Duvvuri ◽  
Mitul Luhar ◽  
Beverley J. McKeon ◽  
Casey Barnard ◽  
...  

1951 ◽  
Vol 18 (1) ◽  
pp. 95-100
Author(s):  
Donald Ross ◽  
J. M. Robertson

Abstract As an interim solution to the problem of the turbulent boundary layer in an adverse pressure gradient, a super-position method of analysis has been developed. In this method, the velocity profile is considered to be the result of two effects: the wall shear stress and the pressure recovery. These are superimposed, yielding an expression for the velocity profiles which approximate measured distributions. The theory also leads to a more reasonable expression for the wall shear-stress coefficient.


Sign in / Sign up

Export Citation Format

Share Document