shear stress component
Recently Published Documents


TOTAL DOCUMENTS

10
(FIVE YEARS 2)

H-INDEX

4
(FIVE YEARS 0)

2020 ◽  
Vol 148 (12) ◽  
pp. 4875-4892
Author(s):  
Aaron Wang ◽  
Ying Pan ◽  
Paul M. Markowski

AbstractSurface friction contributes to tornado formation and maintenance by enhancing the convergence of angular momentum. The traditional lower boundary condition in atmospheric models typically assumes an instant equilibrium between the unresolved stress and the resolved shear. This assumption ignores the physics that turbulent motions are generated and dissipated at finite rates—in effect, turbulence has a memory through its lifetime. In this work, a modified lower boundary condition is proposed to account for the effect of turbulence memory. Specifically, when an air parcel moves along a curved trajectory, a normal surface-shear-stress component arises owing to turbulence memory. In the accompanying large-eddy simulation (LES) of idealized tornadoes, the normal surface-shear-stress component is a source of additional dynamic instability, which provides an extra pathway for the development of turbulent motions. The influence of turbulence memory on the intensity of quasi-steady-state tornadoes remains negligible as long as assumptions employed by the modified lower boundary condition hold over a relatively large fraction of the flow region of interest. However, tornadoes in a transient state may be especially sensitive to turbulence memory.Significance StatementFriction between the wind and the ground can influence atmospheric phenomena in important ways. For example, surface friction can be a significant source of rotation in some thunderstorms, and it can also help to intensify rotation when rotation is already present. Unfortunately, the representation of friction’s effects in atmospheric simulations is especially error-prone in phenomena characterized by rapid temporal evolution or strong spatial variations. Our work explores a new framework for representing friction to include the effect of the so-called turbulence memory. The approach is tested in idealized tornado simulations, but it may be applied to a wide range of atmospheric vortices.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Yue Cao ◽  
Jinhai Xu ◽  
Liang Chen ◽  
Peng Wu ◽  
Faiz Shaikh

AbstractOne element that is essential to consider in underground mining engineering applications is the possibility of pillar failure, which can result in deadly geological disasters, including earthquakes and surface subsidence. Pillars are commonly present under an inclined state and are significantly dependent upon combined compression and shear loading. However, many scholars regard the pure uniaxial compression strength (UCS) of rock as the main evaluation index of pillar strength, which is inconsistent with the field practice. Hence, the present study developed a novel combined compression and shear test (C-CAST) system, which was applied in the investigative acoustic emission (AE) experiments to characterize the failure mechanism and micro-fracture behavior of granite specimens at different inclination angles. The experimental results presented the exponential decrease of UCS of inclined specimens with increase in the shear stress component. Changes in the inclination angle with a range of 0°–10° produced a splitting-shear failure fracture mode from the initial splitting failure. In comparison, an increase in the inclination angle from 10° to 20° produced a single shear failure fracture mode from the initial combined splitting-shear failure. The specimens exhibited nonlinearly reduced microcrack initiation (CI) and damage (CD) thresholds following an increase in the inclination angle, suggesting the dependence of the microcrack initiation and propagation on the shear stress component. The ratio of CI and CD thresholds to inclined UCS varies within a certain range, indicating that the ratio may be an inherent property of granite specimens and is not affected by external load conditions. Additionally, the rock fracture behavior was largely dependent upon the mechanism of shear stress component, as validated by the microcrack initiation and growth. Finally, a modified empirical formula for pillar strength is proposed to investigate the actual strength of inclined pillar. Results of a case study show that the modified formula can be better used to evaluate the stability of inclined pillars.


2014 ◽  
Vol 2014 (1) ◽  
pp. 000500-000504 ◽  
Author(s):  
Francy J. Akkara ◽  
Uday S. Goteti ◽  
Richard C. Jaeger ◽  
Michael C. Hamilton ◽  
Michael J. Palmer ◽  
...  

In certain applications, IC packages may be exposed to extreme temperatures and knowledge of thermally induced stress aids the prediction of performance degradation or failure of the IC. In the devices that are used in extreme conditions, the stress is caused mainly by the mismatch in expansion of various materials triggered by the different coefficients of thermal expansion. This work performed in this study is conducted using NMOS current mirror circuits that are cycled through a wide temperature range of −180°C to 80°C. These circuits are highly sensitive to stress and provide well-localized measurements of shear stress. The sensors are fabricated in such a way that the effects of certain stress components are isolated. These sensors are also temperature compensated so that only the effect of mechanical stress components is observed and changes in device performance due to temperature changes are minimal. Current readings obtained from the sensors are used to extract the shear stress component. Finite element simulations, using expected materials performance parameter information were also performed for similar packages and these results are compared to the measured results.


Holzforschung ◽  
2014 ◽  
Vol 68 (5) ◽  
pp. 583-590 ◽  
Author(s):  
Hiroshi Yoshihara ◽  
Masahiro Yoshinobu

Abstract The off-axis tensile strength (OATS) of copy paper, filter paper, and sack paper was obtained from dog-bone specimens. The relationship between OATS and the off-axis angle (OAA) was predicted under several failure conditions. Additionally, the shear strengths (SS) of these papers were evaluated based on the results of OAT tests. The OATS could be accurately predicted under several Hill-type failure conditions. An equation for deriving the in-plane SS of these papers was proposed based on the tensile strength of the specimen with a 35° OAA, in which the contribution of the shear stress component was maximum.


Author(s):  
Grant Brandal ◽  
Gen Satoh ◽  
Y. Lawrence Yao ◽  
Syed Naveed

Joining the dissimilar metal pair of NiTi to stainless steel is of great interest for implantable medical applications. Formation of brittle intermetallic phases requires that the joining processes used for this dissimilar pair limits the amount of over-melting and mixing along the interface. Thus, because of its ability to precisely control heat input, laser joining is a preferred method. This study explores a method of using a cup and cone interfacial geometry, with no filler material, to increase the tensile strength of the joint. Not only does the cup and cone geometry increase the surface area of the interface, but it also introduces a shear stress component, which is shown to be beneficial to tensile strength of the wire as well. The fracture strength for various cone apex angles and laser powers is determined. Compositional profiles of the interfaces are analyzed. A numerical model is used for explanation of the processing parameters.


2011 ◽  
Vol 189-193 ◽  
pp. 3427-3430
Author(s):  
Xiao Cong He

This paper deals with the stress distribution in adhesively bonded joints with rubbery adhesives. The 3-D finite element analysis (FEA) software was used to model the joint and predict the stress distribution along the whole joint. The FEA results indicated that there are stress discontinuities existing in the stress distribution within the adhesive layer and adherends at the lower interface and the upper interface of the boded section for most of the stress components. The FEA results also show that the stress field in the whole joint is dominated by the normal stresses components S11, S33 and the shear stress component S13. The features and variations of these critical stresses components are discussed.


Holzforschung ◽  
2005 ◽  
Vol 59 (5) ◽  
pp. 552-558 ◽  
Author(s):  
Kenneth M. Entwistle

Abstract Measurements are reported of the mechanosorptive strain in Pinus radiata specimens stressed either in torsion or in bending. It is demonstrated that, to secure valid data, correction must be made for the moisture-induced distortion at zero load. A series of measurements can be made on a single specimen if two successive mechano-sorptive loading cycles are used and the sense of the stress is reversed for the second cycle. At the end of this procedure the specimen has reverted to its original dimensions. The mechanosorptive strain is shown to vary linearly with the applied stress; the ratio of the mechanosorptive strain to the initial elastic strain is therefore an appropriate way of quantifying the mechanosorptive effect. Analysis of torsion and bending data reveals that there is a strong correlation between the magnitude of the mechanosorptive strain and the shear stress component of the applied stress along the cellulose microfibril direction. It is suggested that the mechanosorptive effect arises from the effect of stress on the distribution of hydrogen bonds in hemicelluloses. A detailed model must await more information about the molecular structure of hemicelluloses in the cell walls.


Author(s):  
Hiroyuki Maeyama ◽  
Kazuya Okubo ◽  
Toru Fujii

Abstract Fiber breakage occurring in fiber bundles of plain-woven glass fabric composites is investigated under tension/shear biaxial cyclic stress. The experimental results show an existence of the strong effect of biaxial stress ratio on fiber breakage and its accumulation. Under pure tension (uniaxial) loading, the variation of fiber breakage ratio with respect to loading cycles is divided into two stages in the longitudinal fiber bundles. In the first stage, the fiber breakage scarcely occurs. In the final stage, fibers in a fiber bundle are broken remarkably. Under the biaxial cyclic stress, the fiber breakage in the longitudinal fiber bundle is observed in initial fatigue stage. In the case of the biaxial stress with large shear stress component, the fiber breakage is also observed in the transverse fiber bundle. The fiber breakage is accelerated by the combined stress with large shear stress component, which is called the shear constraint effect.


1991 ◽  
Vol 225 ◽  
pp. 545-555 ◽  
Author(s):  
D. M. Chase

Turbulent boundary-layer fluctuations in the incompressive domain are expressed in terms of fluctuating velocity-product 'sources’ in order to elucidate relative characteristics of fluctuating wall-shear stress and pressure in the subconvective range of streamwise wavenumbers. Appropriate viscous wall conditions are applied, and results are obtained to lowest order in this Strouhal-scaled wavenumber which serves as the expansion parameter. The spectral amplitudes of pressure and of the shear stress component directed along the wavevector both contain additive terms proportional to source integrals with exponential wall-distance weighting characteristic respectively of the irrotational and the rotational fields. At low wavenumbers, barring unexpected relative smallness of the pertinent boundary-layer source term, the rotational terms become dominant. There the wall pressure and shear-stress component have spectra that approach the same non-vanishing, wavevector-white but generally viscous-scale-dependent level and are totally coherent with phase difference ½π. The other, irrotational contributions to the shear-stress and pressure amplitudes likewise bear a simple and previously known, generally wavevector– and frequency-dependent, ratio to one another. In an inviscid limit this contribution to the pressure amplitude reduces to the one obtained previously from inviscid treatments. A representative class of models is introduced for the source spectrum, and the resulting rotational contribution to the spectral density of wall pressure and K-aligned shear stress at low (but incompressive) wavenumbers is estimated. It is suggested that this contribution may predominate and account for measured low-wavenumber levels of wall pressure.


Sign in / Sign up

Export Citation Format

Share Document