A new mechanism for oblique wave resonance in the ‘natural’ far wake

1993 ◽  
Vol 256 ◽  
pp. 269-313 ◽  
Author(s):  
C. H. K. Williamson ◽  
A. Prasad

There has been some debate recently on whether the far-wake structure downstream of a cylinder is dependent on, or ‘connected’ with, the precise details of the near-wake structure. Indeed, it has previously been suggested that the far-wake scale and frequency are unconnected with those of the near wake. In the present paper, we demonstrate that both the far-wake scale and frequency are dependent on the near wake. Surprisingly, the characteristic that actually forges a ‘connection’ between the near and far wakes is the sensitivity to free-stream disturbances. It is these disturbances that are also responsible for the regular three-dimensional patterns that may be visualized. Observations of a regular ‘honeycomb’-like three-dimensional pattern in the far wake is found to be caused by an interaction between oblique shedding waves from upstream and large-scale two-dimensional waves, amplified from the free-stream disturbances. The symmetry and spanwise wavelength of Cimbala, Nagib & Roshko's (1988) three-dimensional pattern are precisely consistent with such wave interactions. In the presence of parallel shedding, the lack of a honeycomb pattern shows that such a three-dimensional pattern is clearly dependent on upstream oblique vortex shedding.With the deductions above as a starting point, we describe a new mechanism for the resonance of oblique waves, as follows. In the case of two-dimensional waves, corresponding to a very small spectral peak in the free stream (fT) interacting (quadratically) with the oblique shedding waves frequency (fK), it appears that the most amplified or resonant frequency in the far wake is a combination frequency fFW = (fK–fT), which corresponds physically with ‘oblique resonance waves’ at a large oblique angle. The large scatter in (fFW/fK) from previous studies is principally caused by the broad response of the far wake to a range of free-stream spectral peaks (fT). We present clear visualization of the oblique wave phenomenon, coupled with velocity measurements which demonstrate that the secondary oblique wave energy can far exceed the secondary two-dimensional wave energy by up to two orders of magnitude. Further experiments show that, in the absence of an influential free-stream spectral peak, the far wake does not resonate, but instead has a low-amplitude broad spectral response. The present phenomena are due to nonlinear instabilities in the far wake, and are not related to vortex pairing. There would appear to be distinct differences between this oblique wave resonance and the subharmonic resonances that have been previously studied in channel flow, boundary layers, mixing layers and airfoil wakes.

1993 ◽  
Vol 256 ◽  
pp. 315-341 ◽  
Author(s):  
C. H. K. Williamson ◽  
A. Prasad

In this paper, we investigate to what extent the far-wake ‘signature’ of the near-wake vortex dynamics of a nominally two-dimensional bluff body is affected by the character of the free-stream noise. We confirm the existence of an oblique wave resonance (at frequency, fK–fT), which is caused by nonlinear ‘quadratic’ interactions between primary oblique shedding waves (fK) and secondary two-dimensional waves (fT), which are amplified from free-stream disturbances. In this work, oblique wave resonance is induced by acoustic forcing of two-dimensional waves. The use of acoustic forcing reveals a set of higher-order oblique wave resonances corresponding to frequencies (fK–nfT), where n is an integer. We find from visualization that, even when the secondary two-dimensional waves have the same frequency as the oblique waves, it is the oblique waves that are preferentially amplified. Oblique wave angles up to 74° have been observed. The response of the wake to a large range of forcing frequencies shows a broad region of peak response, centred around F = (fT/fK) = 0.55, and is in reasonable agreement with predictions from linear stability analysis. A similar broad response is found for each of the higher-order oblique wave modes. Simple equations for the oblique waves yield approximate conditions for maximum wake response, with a frequency for peak response given by Fmax = 1/2n = 1/2, 1/4, 1/6,…, and an oblique wave angle given by θmax = 2θK, where θK is the angle of oblique vortex shedding. An increase in forcing amplitude has the effect of bringing the nonlinear wave interactions, leading to oblique wave resonance, further upstream. Paradoxically, the effect of an increase in amplitude (A) of the two-dimensional wave forcing is to further amplify the oblique waves in preference to the two-dimensional waves and, under some conditions, to inhibit the appearance of prominent two-dimensional waves where they would otherwise appear. With a variation in forcing amplitude, the amplitude of oblique wave response is found to be closely proportional to A½. In summary, this investigation confirms the surprising result that it is only through the existence of noise in the free stream that the far wake is ‘connected’ to the near wake.


2005 ◽  
Vol 127 (6) ◽  
pp. 1085-1094 ◽  
Author(s):  
Alan L. Kastengren ◽  
J. Craig Dutton

The near wake of a blunt-base cylinder at 10° angle-of-attack to a Mach 2.46 free-stream flow is visualized at several locations to study unsteady aspects of its structure. In both side-view and end-view images, the shear layer flapping grows monotonically as the shear layer develops, similar to the trends seen in a corresponding axisymmetric supersonic base flow. The interface convolution, a measure of the tortuousness of the shear layer, peaks for side-view and end-view images during recompression. The high convolution for a septum of fluid seen in the middle of the wake indicates that the septum actively entrains fluid from the recirculation region, which helps to explain the low base pressure for this wake compared to that for a corresponding axisymmetric wake.


Author(s):  
Bruno S. Carmo ◽  
Rafael S. Gioria ◽  
Ivan Korkischko ◽  
Cesar M. Freire ◽  
Julio R. Meneghini

Two- and three-dimensional simulations of the flow around straked cylinders are presented. For the two-dimensional simulations we used the Spectral/hp Element Method, and carried out simulations for five different angles of rotation of the cylinder with respect to the free stream. Fixed and elastically-mounted cylinders were tested, and the Reynolds number was kept constant and equal to 150. The results were compared to those obtained from the simulation of the flow around a bare cylinder under the same conditions. We observed that the two-dimensional strakes are not effective in suppressing the vibration of the cylinders, but also noticed that the responses were completely different even with a slight change in the angle of rotation of the body. The three-dimensional results showed that there are two mechanisms of suppression: the main one is the decrease in the vortex shedding correlation along the span, whilst a secondary one is the vortex wake formation farther downstream.


1992 ◽  
Vol 238 ◽  
pp. 31-54 ◽  
Author(s):  
F. Nuzzi ◽  
C. Magness ◽  
D. Rockwell

A cylinder having mild variations in diameter along its span is subjected to controlled excitation at frequencies above and below the inherent shedding frequency from the corresponding two-dimensional cylinder. The response of the near wake is characterized in terms of timeline visualization and velocity traces, spectra, and phase plane representations. It is possible to generate several types of vortex formation, depending upon the excitation frequency. Globally locked-in, three-dimensional vortex formation can occur along the entire span of the flow. Regions of locally locked-in and period-doubled vortex formation can exist along different portions of the span provided the excitation frequency is properly tuned. Unlike the classical subharmonic instability in free shear flows, the occurrence of period-doubled vortex formation does not involve vortex coalescence; instead, the flow structure alternates between two different states.


2001 ◽  
Vol 426 ◽  
pp. 73-94 ◽  
Author(s):  
A. A. MASLOV ◽  
A. N. SHIPLYUK ◽  
A. A. SIDORENKO ◽  
D. ARNAL

Experimental investigations of the boundary layer receptivity, on the sharp leading edge of a at plate, to acoustic waves induced by two-dimensional and three- dimensional perturbers, have been performed for a free-stream Mach number M∞ = 5.92. The fields of controlled free-stream disturbances were studied. It was shown that two-dimensional and three-dimensional perturbers radiate acoustic waves and that these perturbers present a set of harmonic motionless sources and moving sources with constant amplitude. The disturbances excited in the boundary layer were measured. It was found that acoustic waves impinging on the leading edge generate Tollmien–Schlichting waves in the boundary layer. The receptivity coefficients were obtained for several radiation conditions and intensities. It was shown that there is a dependence of receptivity coefficients on the wave inclination angles.


1992 ◽  
Vol 238 ◽  
pp. 1-30 ◽  
Author(s):  
George Em Karniadakis ◽  
George S. Triantafyllou

The wakes of bluff objects and in particular of circular cylinders are known to undergo a ‘fast’ transition, from a laminar two-dimensional state at Reynolds number 200 to a turbulent state at Reynolds number 400. The process has been documented in several experimental investigations, but the underlying physical mechanisms have remained largely unknown so far. In this paper, the transition process is investigated numerically, through direct simulation of the Navier—Stokes equations at representative Reynolds numbers, up to 500. A high-order time-accurate, mixed spectral/spectral element technique is used. It is shown that the wake first becomes three-dimensional, as a result of a secondary instability of the two-dimensional vortex street. This secondary instability appears at a Reynolds number close to 200. For slightly supercritical Reynolds numbers, a harmonic state develops, in which the flow oscillates at its fundamental frequency (Strouhal number) around a spanwise modulated time-average flow. In the near wake the modulation wavelength of the time-average flow is half of the spanwise wavelength of the perturbation flow, consistently with linear instability theory. The vortex filaments have a spanwise wavy shape in the near wake, and form rib-like structures further downstream. At higher Reynolds numbers the three-dimensional flow oscillation undergoes a period-doubling bifurcation, in which the flow alternates between two different states. Phase-space analysis of the flow shows that the basic limit cycle has branched into two connected limit cycles. In physical space the period doubling appears as the shedding of two distinct types of vortex filaments.Further increases of the Reynolds number result in a cascade of period-doubling bifurcations, which create a chaotic state in the flow at a Reynolds number of about 500. The flow is characterized by broadband power spectra, and the appearance of intermittent phenomena. It is concluded that the wake undergoes transition to turbulence following the period-doubling route.


Author(s):  
J. T. C. Liu ◽  
X. Yu

This paper presents studies of a three-dimensional secondary instability of a spatially developing von Kármán vortex street. It develops owing to the nonlinear interaction between a two-dimensional mean far-wake flow and its most unstable disturbances. This forms a nonlinear primary wake flow. Sections of this flow are selected to perform a temporal secondary stability study under the assumption of parallel flow. The eigenvalue characteristics of the secondary instability are compared with the results from the use of a linear primary flow comprising unmodified mean wake flow coexisting with a linear primary fundamental disturbance with an empirical amplitude as a parameter, resulting in a simpler Floquet analysis. The maximum amplification rates occur at about the same spanwise wavenumber for both the nonlinear and linear primary flows, in qualitative agreement. But the amplification rate versus the spanwise wavenumber spectrum are both qualitatively and quantitatively different, the nonlinear primary flow results in a lower magnitude of the amplification rates. Some interpretations of controlled experiments are made, and it is concluded that the two- and three-dimensional disturbances so obtained appeared to be from the primary instability, where the amplification mechanisms come from the unmodified mean flow. A general discussion of the nonlinear interaction between the primary two-dimensional flow and the three-dimensional secondary instability is given, which may well form the basis for further nonlinear studies.


1989 ◽  
Vol 202 ◽  
pp. 263-294 ◽  
Author(s):  
Shawn D. Anderson ◽  
John K. Eaton

The development of the Reynolds stress field was studied for flows in which an initially two-dimensional boundary layer was skewed sideways by a spanwise pressure gradient ahead of an upstream-facing wedge. Two different wedges were used, providing a variation in the boundary-layer skewing. Measurements of all components of the Reynolds stress tensor and all ten triple products were measured using a rotatable cross-wire anemometer. The results show the expected lag of the shear stress vector behind the strain rate. Comparison of the two present experiments with previous data suggests that the lag can be estimated if the radius of curvature of the free-stream streamline is known. The magnitude of the shear stress vector in the plane of the wall is seen to decrease rapidly as the boundary-layer skewing increases. The amount of decrease is apparently related to the skewing angle between the wall and the free stream. The triple products evolve rapidly and profiles in the three-dimensional boundary layer are considerably different than two-dimensional profiles, leaving little hope for gradient transport models for the Reynolds stresses. The simplified model presented by Rotta (1979) performs reasonably well providing that an appropriate value of the T-parameter is chosen.


Sign in / Sign up

Export Citation Format

Share Document