Free-surface Taylor vortices

1994 ◽  
Vol 261 ◽  
pp. 169-198 ◽  
Author(s):  
F. J. Wang ◽  
G. A. Domoto

The hydrodynamic instability of a viscous incompressible flow with a free surface is studied both numerically and experimentally. While the free-surface flow is basically two-dimensional at low Reynolds numbers, a three-dimensional secondary flow pattern similar to the Taylor vorticies between two concentric cylinders appears at higher rotational speeds. The secondary flow has periodic velocity components in the axial direction and is characterized by a distinct spatially periodic variation in surface height similar to a standing wave. A numerical method, using boundary-fitted coordinates and multigrid methods to solve the Navier–Stokes equations in primitive variables, is developed to treat two-dimensional free-surface flows. A similar numerical technique is applied to the linearized three-dimensional perturbation equations to treat the onset of secondary flows. Experimental measurements have been obtained using light sheet techniques to visualize the secondary flow near the free surface. Photographs of streak lines were taken and compared to the numerical calculations. It has been shown that the solution of the linearized equations contains most of the important features of the nonlinear secondary flows at Reynolds number higher than the critical value. The experimental results also show that the numerical method predicts well the onset of instability in terms of the critical wavenumber and Reynolds number.

1990 ◽  
Vol 217 ◽  
pp. 367-390 ◽  
Author(s):  
Philip Hall ◽  
Sharon O. Seddougui

The three-dimensional boundary layer on a swept wing can support different types of hydrodynamic instability. Here attention is focused on the so-called ‘spanwise instability’ problem which occurs when the attachment-line boundary layer on the leading edge becomes unstable to Tollmien–Schlichting waves. In order to gain insight into the interactions that are important in that problem a simplified basic state is considered. This simplified flow corresponds to the swept attachment-line boundary layer on an infinite flat plate. The basic flow here is an exact solution of the Navier–Stokes equations and its stability to two-dimensional waves propagating along the attachment line can be considered exactly at finite Reynolds number. This has been done in the linear and weakly nonlinear regimes by Hall, Malik & Poll (1984) and Hall & Malik (1986). Here the corresponding problem is studied for oblique waves and their interaction with two-dimensional waves is investigated. In fact oblique modes cannot be described exactly at finite Reynolds number so it is necessary to make a high-Reynolds-number approximation and use triple-deck theory. It is shown that there are two types of oblique wave which, if excited, cause the destabilization of the two-dimensional mode and the breakdown of the disturbed flow at a finite distance from the leading edge. First a low-frequency mode closely related to the viscous stationary crossflow mode discussed by Hall (1986) and MacKerrell (1987) is a possible cause of breakdown. Secondly a class of oblique wave with frequency comparable with that of the two-dimensional mode is another cause of breakdown. It is shown that the relative importance of the modes depends on the distance from the attachment line.


1989 ◽  
Vol 16 (6) ◽  
pp. 829-844
Author(s):  
A. Soulaïmani ◽  
Y. Ouellet ◽  
G. Dhatt ◽  
R. Blanchet

This paper is devoted to the computational analysis of three-dimensional free surface flows. The model solves the Navier-Stokes equations without any a priori restriction on the pressure distribution. The variational formulation along with the solution algorithm are presented. Finally, the model is used to study the hydrodynamic regime in the vicinity of a projected harbor installation. Key words: free surface flows, three-dimensional flows, finite element method.


2003 ◽  
Vol 478 ◽  
pp. 197-226 ◽  
Author(s):  
M. J. VOGEL ◽  
A. H. HIRSA ◽  
J. M. LOPEZ

The flow in a rectangular cavity driven by the sinusoidal motion of the floor in its own plane has been studied both experimentally and computationally over a broad range of parameters. The stability limits of the time-periodic two-dimensional base state are of primary interest in the present study, as it is within these limits that the flow can be used as a viable surface viscometer (as outlined theoretically in Lopez & Hirsa 2001). Three flow regimes have been found experimentally in the parameter space considered: an essentially two-dimensional time-periodic flow, a time-periodic three-dimensional flow with a cellular structure in the spanwise direction, and a three-dimensional irregular (in both space and time) flow. The system poses a space–time symmetry that consists of a reflection about the vertical mid-plane together with a half-period translation in time (RT symmetry); the two-dimensional base state is invariant to this symmetry. Computations of the two-dimensional Navier–Stokes equations agree with experimentally measured velocity and vorticity to within experimental uncertainty in parameter regimes where the flow is essentially uniform in the spanwise direction, indicating that in this cavity with large spanwise aspect ratio, endwall effects are small and localized for these cases. Two classes of flows have been investigated, one with a rigid no-slip top and the other with a free surface. The basic states of these two cases are quite similar, but the free-surface case breaks RT symmetry at lower forcing amplitudes, and the structure of the three-dimensional states also differs significantly between the two classes.


2001 ◽  
Vol 37 (7) ◽  
pp. 747-796 ◽  
Author(s):  
M.F. Tomé ◽  
A.C. Filho ◽  
J.A. Cuminato ◽  
N. Mangiavacchi ◽  
S. Mckee

This paper concerns the two-dimensional motion of a viscous liquid down a perturbed inclined plane under the influence of gravity, and the main goal is the prediction of the surface height as the fluid flows over the perturbations. The specific perturbations chosen for the present study were two humps stretching laterally across an otherwise uniform plane, with the flow being confined in the lateral direction by the walls of a channel. Theoretical predictions of the flow have been obtained by finite-element approximations to the Navier-Stokes equations and also by a variety of lubrication approximations. The predictions from the various models are compared with experimental measurements of the free-surface profiles. The principal aim of this study is the establishment and assessment of certain numerical and asymptotic models for the description of a class of free-surface flows, exemplified by the particular case of flow over a perturbed inclined plane. The laboratory experiments were made over a range of flow rates such that the Reynolds number, based on the volume flux per unit width and the kinematical viscosity of the fluid, ranged between 0.369 and 36.6. It was found that, at the smaller Reynolds numbers, a standard lubrication approximation provided a very good representation of the experimental measurements but, as the flow rate was increased, the standard model did not capture several important features of the flow. On the other hand, a lubrication approximation allowing for surface tension and inertial effects expanded the range of applicability of the basic theory by almost an order of magnitude, up to Reynolds numbers approaching 10. At larger flow rates, numerical solutions to the full equations of motion provided a description of the experimental results to within about 4% , up to a Reynolds number of 25, beyond which we were unable to obtain numerical solutions. It is not known why numerical solutions were not possible at larger flow rates, but it is possible that there is a bifurcation of the Navier-Stokes equations to a branch of unsteady motions near a Reynolds number of 25.


2005 ◽  
Vol 4 (2) ◽  
Author(s):  
C. M. Oishi ◽  
J. A. Cuminato ◽  
V. G. Ferreira ◽  
M. F. Tomé ◽  
A. Castelo ◽  
...  

The present work is concerned with a numerical method for solving the two-dimensional time-dependent incompressible Navier-Stokes equations in the primitive variables formulation. The diffusive terms are treated by Implicit Backward and Crank-Nicolson methods, and the non-linear convection terms are, explicitly, approximated by the high order upwind VONOS (Variable-Order Non-Oscillatory Scheme) scheme. The boundary conditions for the pressure field at the free surface are treated implicitly, and for the velocity field explicitly. The numerical method is then applied to the simulation of free surface and confined flows. The numerical results show that the present technique eliminates the stability restriction in the original explicit method. For low Reynolds number flow dynamics, the method is robust and produces numerical results that compare very well with the analytical solutions.


2015 ◽  
Vol 782 ◽  
pp. 5-24 ◽  
Author(s):  
E. S. Benilov

This work examines free-surface flows down an inclined substrate. The slope of the free surface and that of the substrate are both assumed small, whereas the Reynolds number $Re$ remains unrestricted. A set of asymptotic equations is derived, which includes the lubrication and shallow-water approximations as limiting cases (as $Re\rightarrow 0$ and $Re\rightarrow \infty$, respectively). The set is used to examine hydraulic jumps (bores) in a two-dimensional flow down an inclined substrate. An existence criterion for steadily propagating bores is obtained for the $({\it\eta},s)$ parameter space, where ${\it\eta}$ is the bore’s downstream-to-upstream depth ratio, and $s$ is a non-dimensional parameter characterising the substrate’s slope. The criterion reflects two different mechanisms restricting bores. If $s$ is sufficiently large, a ‘corner’ develops at the foot of the bore’s front – which, physically, causes overturning. If, in turn, ${\it\eta}$ is sufficiently small (i.e. the bore’s relative amplitude is sufficiently large), the non-existence of bores is caused by a stagnation point emerging in the flow.


2004 ◽  
Vol 123 (2-3) ◽  
pp. 85-103 ◽  
Author(s):  
M.F. Tomé ◽  
L. Grossi ◽  
A. Castelo ◽  
J.A. Cuminato ◽  
N. Mangiavacchi ◽  
...  

2017 ◽  
Vol 826 ◽  
pp. 302-334 ◽  
Author(s):  
Francesco Romanò ◽  
Stefan Albensoeder ◽  
Hendrik C. Kuhlmann

The structure of the incompressible steady three-dimensional flow in a two-sided anti-symmetrically lid-driven cavity is investigated for an aspect ratio $\unicode[STIX]{x1D6E4}=1.7$ and spanwise-periodic boundary conditions. Flow fields are computed by solving the Navier–Stokes equations with a fully spectral method on $128^{3}$ grid points utilizing second-order asymptotic solutions near the singular corners. The supercritical flow arises in the form of steady rectangular convection cells within which the flow is point symmetric with respect to the cell centre. Global streamline chaos occupying the whole domain is found immediately above the threshold to three-dimensional flow. Beyond a certain Reynolds number the chaotic sea recedes from the interior, giving way to regular islands. The regular Kolmogorov–Arnold–Moser tori grow with increasing Reynolds number before they shrink again to eventually vanish completely. The global chaos at onset is traced back to the existence of one hyperbolic and two elliptic periodic lines in the basic flow. The singular points of the three-dimensional flow which emerge from the periodic lines quickly change such that, for a wide range of supercritical Reynolds number, each periodic convection cell houses a double spiralling-in saddle focus in its centre, a spiralling-out saddle focus on each of the two cell boundaries and two types of saddle limit cycle on the walls. A representative analysis for $\mathit{Re}=500$ shows chaotic streamlines to be due to chaotic tangling of the two-dimensional stable manifold of the central spiralling-in saddle focus and the two-dimensional unstable manifold of the central wall limit cycle. Embedded Kolmogorov–Arnold–Moser tori and the associated closed streamlines are computed for several supercritical Reynolds numbers owing to their importance for particle transport.


1998 ◽  
Vol 377 ◽  
pp. 313-345 ◽  
Author(s):  
ASGHAR ESMAEELI ◽  
GRÉTAR TRYGGVASON

Direct numerical simulations of the motion of two- and three-dimensional buoyant bubbles in periodic domains are presented. The full Navier–Stokes equations are solved by a finite difference/front tracking method that allows a fully deformable interface between the bubbles and the ambient fluid and the inclusion of surface tension. The governing parameters are selected such that the average rise Reynolds number is O(1) and deformations of the bubbles are small. The rise velocity of a regular array of three-dimensional bubbles at different volume fractions agrees relatively well with the prediction of Sangani (1988) for Stokes flow. A regular array of two- and three-dimensional bubbles, however, is an unstable configuration and the breakup, and the subsequent bubble–bubble interactions take place by ‘drafting, kissing, and tumbling’. A comparison between a finite Reynolds number two-dimensional simulation with sixteen bubbles and a Stokes flow simulation shows that the finite Reynolds number array breaks up much faster. It is found that a freely evolving array of two-dimensional bubbles rises faster than a regular array and simulations with different numbers of two-dimensional bubbles (1–49) show that the rise velocity increases slowly with the size of the system. Computations of four and eight three-dimensional bubbles per period also show a slight increase in the average rise velocity compared to a regular array. The difference between two- and three-dimensional bubbles is discussed.


Sign in / Sign up

Export Citation Format

Share Document