scholarly journals A SEMI-IMPLICIT SCHEME FOR SOLVING INCOMPRESSIBLE VISCOUS FREE SURFACE FLOWS

2005 ◽  
Vol 4 (2) ◽  
Author(s):  
C. M. Oishi ◽  
J. A. Cuminato ◽  
V. G. Ferreira ◽  
M. F. Tomé ◽  
A. Castelo ◽  
...  

The present work is concerned with a numerical method for solving the two-dimensional time-dependent incompressible Navier-Stokes equations in the primitive variables formulation. The diffusive terms are treated by Implicit Backward and Crank-Nicolson methods, and the non-linear convection terms are, explicitly, approximated by the high order upwind VONOS (Variable-Order Non-Oscillatory Scheme) scheme. The boundary conditions for the pressure field at the free surface are treated implicitly, and for the velocity field explicitly. The numerical method is then applied to the simulation of free surface and confined flows. The numerical results show that the present technique eliminates the stability restriction in the original explicit method. For low Reynolds number flow dynamics, the method is robust and produces numerical results that compare very well with the analytical solutions.

2005 ◽  
Vol 4 (2) ◽  
pp. 106
Author(s):  
C. M. Oishi ◽  
J. A. Cuminato ◽  
V. G. Ferreira ◽  
M. F. Tomé ◽  
A. Castelo ◽  
...  

The present work is concerned with a numerical method for solving the two-dimensional time-dependent incompressible Navier-Stokes equations in the primitive variables formulation. The diffusive terms are treated by Implicit Backward and Crank-Nicolson methods, and the non-linear convection terms are, explicitly, approximated by the high order upwind VONOS (Variable-Order Non-Oscillatory Scheme) scheme. The boundary conditions for the pressure field at the free surface are treated implicitly, and for the velocity field explicitly. The numerical method is then applied to the simulation of free surface and confined flows. The numerical results show that the present technique eliminates the stability restriction in the original explicit method. For low Reynolds number flow dynamics, the method is robust and produces numerical results that compare very well with the analytical solutions.


Author(s):  
Fayçal Hammami ◽  
Nader Ben Cheikh ◽  
Brahim Ben Beya

This paper deals with the numerical study of bifurcations in a two-sided lid driven cavity flow. The flow is generated by moving the upper wall to the right while moving the left wall downwards. Numerical simulations are performed by solving the unsteady two dimensional Navier-Stokes equations using the finite volume method and multigrid acceleration. In this problem, the ratio of the height to the width of the cavity are ranged from H/L = 0.25 to 1.5. The code for this cavity is presented using rectangular cavity with the grids 144 × 36, 144 × 72, 144 × 104, 144 × 136, 144 × 176 and 144 × 216. Numerous comparisons with the results available in the literature are given. Very good agreements are found between current numerical results and published numerical results. Various velocity ratios ranged in 0.01≤ α ≤ 0.99 at a fixed aspect ratios (A = 0.5, 0.75, 1.25 and 1.5) were considered. It is observed that the transition to the unsteady regime follows the classical scheme of a Hopf bifurcation. The stability analysis depending on the aspect ratio, velocity ratios α and the Reynolds number when transition phenomenon occurs is considered in this paper.


1999 ◽  
Vol 396 ◽  
pp. 37-71 ◽  
Author(s):  
LEONID BREVDO ◽  
PATRICE LAURE ◽  
FREDERIC DIAS ◽  
THOMAS J. BRIDGES

The film flow down an inclined plane has several features that make it an interesting prototype for studying transition in a shear flow: the basic parallel state is an exact explicit solution of the Navier–Stokes equations; the experimentally observed transition of this flow shows many properties in common with boundary-layer transition; and it has a free surface, leading to more than one class of modes. In this paper, unstable wavepackets – associated with the full Navier–Stokes equations with viscous free-surface boundary conditions – are analysed by using the formalism of absolute and convective instabilities based on the exact Briggs collision criterion for multiple k-roots of D(k, ω) = 0; where k is a wavenumber, ω is a frequency and D(k, ω) is the dispersion relation function.The main results of this paper are threefold. First, we work with the full Navier–Stokes equations with viscous free-surface boundary conditions, rather than a model partial differential equation, and, guided by experiments, explore a large region of the parameter space to see if absolute instability – as predicted by some model equations – is possible. Secondly, our numerical results find only convective instability, in complete agreement with experiments. Thirdly, we find a curious saddle-point bifurcation which affects dramatically the interpretation of the convective instability. This is the first finding of this type of bifurcation in a fluids problem and it may have implications for the analysis of wavepackets in other flows, in particular for three-dimensional instabilities. The numerical results of the wavepacket analysis compare well with the available experimental data, confirming the importance of convective instability for this problem.The numerical results on the position of a dominant saddle point obtained by using the exact collision criterion are also compared to the results based on a steepest-descent method coupled with a continuation procedure for tracking convective instability that until now was considered as reliable. While for two-dimensional instabilities a numerical implementation of the collision criterion is readily available, the only existing numerical procedure for studying three-dimensional wavepackets is based on the tracking technique. For the present flow, the comparison shows a failure of the tracking treatment to recover a subinterval of the interval of unstable ray velocities V whose length constitutes 29% of the length of the entire unstable interval of V. The failure occurs due to a bifurcation of the saddle point, where V is a bifurcation parameter. We argue that this bifurcation of unstable ray velocities should be observable in experiments because of the abrupt increase by a factor of about 5.3 of the wavelength across the wavepacket associated with the appearance of the bifurcating branch. Further implications for experiments including the effect on spatial amplification rate are also discussed.


Author(s):  
Iraj Saeedpanah ◽  
M. Shayanfar ◽  
E. Jabbari ◽  
Mohammad Haji Mohammadi

Free surface flows are frequently encountered in hydraulic engineering problems including water jets, weirs and around gates. An iterative solution to the incompressible two-dimensional vertical steady Navier-Stokes equations, comprising momentum and continuity equations, is used to solve for the priori unknown free surface, the velocity and the pressure fields. The entire water body is covered by a unstructured finite element grid which is locally refined. The dynamic boundary condition is imposed for the free surface where the pressure vanishes. This procedure is done continuously until the normal velocities components vanish. To overcome numerical errors and oscillations encountering in convection terms, the SUPG (streamline upwinding Petrov-Galerkin) method is applied. The solution method is tested for different discharges onto a standard spillway geometries. The results shows good agreement with available experimental data.


1989 ◽  
Vol 16 (6) ◽  
pp. 829-844
Author(s):  
A. Soulaïmani ◽  
Y. Ouellet ◽  
G. Dhatt ◽  
R. Blanchet

This paper is devoted to the computational analysis of three-dimensional free surface flows. The model solves the Navier-Stokes equations without any a priori restriction on the pressure distribution. The variational formulation along with the solution algorithm are presented. Finally, the model is used to study the hydrodynamic regime in the vicinity of a projected harbor installation. Key words: free surface flows, three-dimensional flows, finite element method.


This paper concerns the two-dimensional motion of a viscous liquid down a perturbed inclined plane under the influence of gravity, and the main goal is the prediction of the surface height as the fluid flows over the perturbations. The specific perturbations chosen for the present study were two humps stretching laterally across an otherwise uniform plane, with the flow being confined in the lateral direction by the walls of a channel. Theoretical predictions of the flow have been obtained by finite-element approximations to the Navier-Stokes equations and also by a variety of lubrication approximations. The predictions from the various models are compared with experimental measurements of the free-surface profiles. The principal aim of this study is the establishment and assessment of certain numerical and asymptotic models for the description of a class of free-surface flows, exemplified by the particular case of flow over a perturbed inclined plane. The laboratory experiments were made over a range of flow rates such that the Reynolds number, based on the volume flux per unit width and the kinematical viscosity of the fluid, ranged between 0.369 and 36.6. It was found that, at the smaller Reynolds numbers, a standard lubrication approximation provided a very good representation of the experimental measurements but, as the flow rate was increased, the standard model did not capture several important features of the flow. On the other hand, a lubrication approximation allowing for surface tension and inertial effects expanded the range of applicability of the basic theory by almost an order of magnitude, up to Reynolds numbers approaching 10. At larger flow rates, numerical solutions to the full equations of motion provided a description of the experimental results to within about 4% , up to a Reynolds number of 25, beyond which we were unable to obtain numerical solutions. It is not known why numerical solutions were not possible at larger flow rates, but it is possible that there is a bifurcation of the Navier-Stokes equations to a branch of unsteady motions near a Reynolds number of 25.


2005 ◽  
Vol 127 (6) ◽  
pp. 1111-1121 ◽  
Author(s):  
Giuseppina Colicchio ◽  
Maurizio Landrini ◽  
John R. Chaplin

A numerical method is developed for modeling the violent motion and fragmentation of an interface between two fluids. The flow field is described through the solution of the Navier-Stokes equations for both fluids (in this case water and air), and the interface is captured by a Level-Set function. Particular attention is given to modeling the interface, where most of the numerical approximations are made. Novel features are that the reintialization procedure has been redefined in cells crossed by the interface; the density has been smoothed across the interface using an exponential function to obtain an equally stiff variation of the density and of its inverse; and we have used an essentially non-oscillatory scheme with a limiter whose coefficients depend on the distance function at the interface. The results of the refined scheme have been compared with those of the basic scheme and with other numerical solvers, with favorable results. Besides the case of the vertical surface-piercing plate (for which new laboratory measurements were carried out) the numerical method is applied to problems involving a dam-break and wall-impact, the interaction of a vortex with a free surface, and the deformation of a cylindrical bubble. Promising agreement with other sources of data is found in every case.


2009 ◽  
Vol 642 ◽  
pp. 329-348 ◽  
Author(s):  
O. DEVAUCHELLE ◽  
L. MALVERTI ◽  
É. LAJEUNESSE ◽  
P.-Y. LAGRÉE ◽  
C. JOSSERAND ◽  
...  

The present paper is devoted to the formation of sand patterns by laminar flows. It focuses on the rhomboid beach pattern, formed during the backswash. A recent bedload transport model, based on a moving-grains balance, is generalized in three dimensions for viscous flows. The water flow is modelled by the full incompressible Navier–Stokes equations with a free surface. A linear stability analysis then shows the simultaneous existence of two distinct instabilities, namely ripples and bars. The comparison of the bar instability characteristics with laboratory rhomboid patterns indicates that the latter could result from the nonlinear evolution of unstable bars. This result, together with the sensibility of the stability analysis with respect to the parameters of the transport law, suggests that the rhomboid pattern could help improving sediment transport models, so critical to geomorphologists.


2005 ◽  
Vol 73 (6) ◽  
pp. 940-947 ◽  
Author(s):  
Cassio M. Oishi ◽  
José A. Cuminato ◽  
Valdemir G. Ferreira ◽  
Murilo F. Tomé ◽  
Antonio Castelo ◽  
...  

The present work is concerned with a semi-implicit modification of the GENSMAC method for solving the two-dimensional time-dependent incompressible Navier-Stokes equations in primitive variables formulation with a free surface. A projection method is employed to uncouple the velocity components and pressure, thus allowing the solution of each variable separately (a segregated approach). The viscous terms are treated by the implicit backward method in time and a centered second order method in space, and the nonlinear convection terms are explicitly approximated by the high order upwind variable-order nonoscillatory scheme method in space. The boundary conditions at the free surface couple the otherwise segregated velocity and pressure fields. The present work proposes a method that allows the segregated solution of free surface flow problems to be computed by semi-implicit schemes that preserve the stability conditions of the related coupled semi-implicit scheme. The numerical method is applied to both the simulation of free surface and to confined flows. The numerical results demonstrate that the present technique eliminates the parabolic stability restriction required by the original explicit GENSMAC method, and also found in segregated semi-implicit methods with time-lagged boundary conditions. For low Reynolds number flows, the method is robust and very efficient when compared to the original GENSMAC method.


2013 ◽  
Vol 405-408 ◽  
pp. 3208-3212
Author(s):  
Jyh Haw Tang ◽  
Ming Kuan Sun ◽  
Ying Chen

This paper proposes the least-squares finite element method (LSFEM) for simulating the free surface flows in multi-step free overfalls. Motion of the free surface flows is represented with two-phased surface profiles by solving the Navier-Stokes equations. The fluid is considered to be incompressible and the dynamic and kinematic boundary conditions of free surface are described in an Eulerian coordinate system. In this simulation, the volume of fluid (VOF) method and continuous stress force (CSF) models in association of color function are incorporated for the determination of the interface between water and air. The simulation results from the LSFEM model are carefully verified for the unit-step free overfall case. The quantitative comparisons in terms of the parameters such as different inflow rates, reattached length, water height after the fall and critical depth with previous numerical results or experimental measurements are shown to be in good agreement. In order to understand more about the complicate free surface profile of a dual-step free overfall, the LSFEM model is simulated for different inflow rates. In comparison with the available experimental data, it is shown that the LSFEM can effectively simulate the multi-step free overfall flow phenomena. Our study presents some regression formula for the dual-step free overfall, it is hoped that these formula will be helpful for the engineering designs and applications.


Sign in / Sign up

Export Citation Format

Share Document