Spatio-temporal dynamics of a periodically driven cavity flow

2003 ◽  
Vol 478 ◽  
pp. 197-226 ◽  
Author(s):  
M. J. VOGEL ◽  
A. H. HIRSA ◽  
J. M. LOPEZ

The flow in a rectangular cavity driven by the sinusoidal motion of the floor in its own plane has been studied both experimentally and computationally over a broad range of parameters. The stability limits of the time-periodic two-dimensional base state are of primary interest in the present study, as it is within these limits that the flow can be used as a viable surface viscometer (as outlined theoretically in Lopez & Hirsa 2001). Three flow regimes have been found experimentally in the parameter space considered: an essentially two-dimensional time-periodic flow, a time-periodic three-dimensional flow with a cellular structure in the spanwise direction, and a three-dimensional irregular (in both space and time) flow. The system poses a space–time symmetry that consists of a reflection about the vertical mid-plane together with a half-period translation in time (RT symmetry); the two-dimensional base state is invariant to this symmetry. Computations of the two-dimensional Navier–Stokes equations agree with experimentally measured velocity and vorticity to within experimental uncertainty in parameter regimes where the flow is essentially uniform in the spanwise direction, indicating that in this cavity with large spanwise aspect ratio, endwall effects are small and localized for these cases. Two classes of flows have been investigated, one with a rigid no-slip top and the other with a free surface. The basic states of these two cases are quite similar, but the free-surface case breaks RT symmetry at lower forcing amplitudes, and the structure of the three-dimensional states also differs significantly between the two classes.

2016 ◽  
Vol 802 ◽  
pp. 5-36 ◽  
Author(s):  
A. Kalogirou ◽  
D. T. Papageorgiou

The nonlinear stability of immiscible two-fluid Couette flows in the presence of inertia is considered. The interface between the two viscous fluids can support insoluble surfactants and the interplay between the underlying hydrodynamic instabilities and Marangoni effects is explored analytically and computationally in both two and three dimensions. Asymptotic analysis when one of the layers is thin relative to the other yields a coupled system of nonlinear equations describing the spatio-temporal evolution of the interface and its local surfactant concentration. The system is non-local and arises by appropriately matching solutions of the linearised Navier–Stokes equations in the thicker layer to the solution in the thin layer. The scaled models are used to study different physical mechanisms by varying the Reynolds number, the viscosity ratio between the two layers, the total amount of surfactant present initially and a scaled Péclet number measuring diffusion of surfactant along the interface. The linear stability of the underlying flow to two- and three-dimensional disturbances is investigated and a Squire’s type theorem is found to hold when inertia is absent. When inertia is present, three-dimensional disturbances can be more unstable than two-dimensional ones and so Squire’s theorem does not hold. The linear instabilities are followed into the nonlinear regime by solving the evolution equations numerically; this is achieved by implementing highly accurate linearly implicit schemes in time with spectral discretisations in space. Numerical experiments for finite Reynolds numbers indicate that for two-dimensional flows the solutions are mostly nonlinear travelling waves of permanent form, even though these can lose stability via Hopf bifurcations to time-periodic travelling waves. As the length of the system (that is the wavelength of periodic waves) increases, the dynamics becomes more complex and includes time-periodic, quasi-periodic as well as chaotic fluctuations. It is also found that one-dimensional interfacial travelling waves of permanent form can become unstable to spanwise perturbations for a wide range of parameters, producing three-dimensional flows with interfacial profiles that are two-dimensional and travel in the direction of the underlying shear. Nonlinear flows are also computed for parameters which predict linear instability to three-dimensional disturbances but not two-dimensional ones. These are found to have a one-dimensional interface in a rotated frame with respect to the direction of the underlying shear and travel obliquely without changing form.


2010 ◽  
Vol 667 ◽  
pp. 336-357 ◽  
Author(s):  
H. M. BLACKBURN ◽  
J. M. LOPEZ

Time-periodic flows with spatio-temporal symmetry Z2 × O(2) – invariance in the spanwise direction generating the O(2) symmetry group and a half-period-reflection symmetry in the streamwise direction generating a spatio-temporal Z2 symmetry group – are of interest largely because this is the symmetry group of periodic laminar two-dimensional wakes of symmetric bodies. Such flows are the base states for various three-dimensional instabilities; the periodically shedding two-dimensional circular cylinder wake with three-dimensional modes A and B being the generic example. However, it is not easy to physically realize the ideal flows owing to the presence of end effects and finite spanwise geometries. Flows past rings are sometimes advanced as providing a relevant idealization, but in fact these have symmetry group O(2) and only approach Z2 × O(2) symmetry in the infinite aspect ratio limit. The present work examines physically realizable periodically driven annular cavity flows that possess Z2 × O(2) spatio-temporal symmetry. The flows have three distinct codimension-1 instabilities: two synchronous modes (A and B), and two manifestations of a quasi-periodic (QP) mode, either as modulated standing waves or modulated travelling waves. It is found that the curvature of the system can determine which of these modes is the first to become unstable with increasing Reynolds number, and that even in the nonlinear regime near onset of three-dimensional instabilities the dynamics are dominated by mixed modes with complicated spatio-temporal structure. Supplementary movies illustrating the spatio-temporal dynamics are available at journals.cambridge.org/flm.


1994 ◽  
Vol 261 ◽  
pp. 169-198 ◽  
Author(s):  
F. J. Wang ◽  
G. A. Domoto

The hydrodynamic instability of a viscous incompressible flow with a free surface is studied both numerically and experimentally. While the free-surface flow is basically two-dimensional at low Reynolds numbers, a three-dimensional secondary flow pattern similar to the Taylor vorticies between two concentric cylinders appears at higher rotational speeds. The secondary flow has periodic velocity components in the axial direction and is characterized by a distinct spatially periodic variation in surface height similar to a standing wave. A numerical method, using boundary-fitted coordinates and multigrid methods to solve the Navier–Stokes equations in primitive variables, is developed to treat two-dimensional free-surface flows. A similar numerical technique is applied to the linearized three-dimensional perturbation equations to treat the onset of secondary flows. Experimental measurements have been obtained using light sheet techniques to visualize the secondary flow near the free surface. Photographs of streak lines were taken and compared to the numerical calculations. It has been shown that the solution of the linearized equations contains most of the important features of the nonlinear secondary flows at Reynolds number higher than the critical value. The experimental results also show that the numerical method predicts well the onset of instability in terms of the critical wavenumber and Reynolds number.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Niklas Ericsson

Abstract We develop a framework for solving the stationary, incompressible Stokes equations in an axisymmetric domain. By means of Fourier expansion with respect to the angular variable, the three-dimensional Stokes problem is reduced to an equivalent, countable family of decoupled two-dimensional problems. By using decomposition of three-dimensional Sobolev norms, we derive natural variational spaces for the two-dimensional problems, and show that the variational formulations are well-posed. We analyze the error due to Fourier truncation and conclude that, for data that are sufficiently regular, it suffices to solve a small number of two-dimensional problems.


2000 ◽  
Vol 411 ◽  
pp. 1-38 ◽  
Author(s):  
C. ROSS ETHIER ◽  
SUJATA PRAKASH ◽  
DAVID A. STEINMAN ◽  
RICHARD L. LEASK ◽  
GREGORY G. COUCH ◽  
...  

Numerical and experimental techniques were used to study the physics of flow separation for steady internal flow in a 45° junction geometry, such as that observed between two pipes or between the downstream end of a bypass graft and an artery. The three-dimensional Navier–Stokes equations were solved using a validated finite element code, and complementary experiments were performed using the photochromic dye tracer technique. Inlet Reynolds numbers in the range 250 to 1650 were considered. An adaptive mesh refinement approach was adopted to ensure grid-independent solutions. Good agreement was observed between the numerical results and the experimentally measured velocity fields; however, the wall shear stress agreement was less satisfactory. Just distal to the ‘toe’ of the junction, axial flow separation was observed for all Reynolds numbers greater than 250. Further downstream (approximately 1.3 diameters from the toe), the axial flow again separated for Re [ges ] 450. The location and structure of axial flow separation in this geometry is controlled by secondary flows, which at sufficiently high Re create free stagnation points on the model symmetry plane. In fact, separation in this flow is best explained by a secondary flow boundary layer collision model, analogous to that proposed for flow in the entry region of a curved tube. Novel features of this flow include axial flow separation at modest Re (as compared to flow in a curved tube, where separation occurs only at much higher Re), and the existence and interaction of two distinct three-dimensional separation zones.


1995 ◽  
Vol 291 ◽  
pp. 369-392 ◽  
Author(s):  
Ronald D. Joslin

The spatial evolution of three-dimensional disturbances in an attachment-line boundary layer is computed by direct numerical simulation of the unsteady, incompressible Navier–Stokes equations. Disturbances are introduced into the boundary layer by harmonic sources that involve unsteady suction and blowing through the wall. Various harmonic-source generators are implemented on or near the attachment line, and the disturbance evolutions are compared. Previous two-dimensional simulation results and nonparallel theory are compared with the present results. The three-dimensional simulation results for disturbances with quasi-two-dimensional features indicate growth rates of only a few percent larger than pure two-dimensional results; however, the results are close enough to enable the use of the more computationally efficient, two-dimensional approach. However, true three-dimensional disturbances are more likely in practice and are more stable than two-dimensional disturbances. Disturbances generated off (but near) the attachment line spread both away from and toward the attachment line as they evolve. The evolution pattern is comparable to wave packets in flat-plate boundary-layer flows. Suction stabilizes the quasi-two-dimensional attachment-line instabilities, and blowing destabilizes these instabilities; these results qualitatively agree with the theory. Furthermore, suction stabilizes the disturbances that develop off the attachment line. Clearly, disturbances that are generated near the attachment line can supply energy to attachment-line instabilities, but suction can be used to stabilize these instabilities.


Author(s):  
Ahmed Abdelwahab

Vaned diffusers have been used successfully as efficient and compact dynamic pressure recovery devices in industrial centrifugal compressor stages. Typically such diffusers consist of a cascade of two-dimensional blades distributed circumferentially at close proximity to the impeller exit. In this paper three low-solidity diffuser blade geometries are numerically investigated. The first geometry employs variable stagger stacking of similar blade sections along the blade span. The second employs linearly inclined stacking to generate blade lean along the diffuser span. The third geometry employs the conventional two-dimensional low-solidity diffuser geometry with no variable stagger or lean. The variable stagger blade arrangement has the potential of better aligning the diffuser leading edges with the highly non-uniform flow leaving the impeller. Both variable stagger and linearly leaned diffuser blade arrangements, however, have the effect of redistributing the blade loading and flow streamlines in the spanwise direction leading to improved efficiency and pressure recovery capacity of the diffuser. In this paper a description of the proposed diffuser geometries is presented. The results of Three-dimensional Navier-Stokes numerical simulations of the three centrifugal compressor arrangements are discussed. Comparisons between the performance of the two and three-dimensional diffuser blade geometries are presented. The comparisons indeed show that the variable stagger and leaned diffusers present an improvement in the diffuser operating range and pressure recovery capacity over the conventional two-dimensional diffuser geometry.


1989 ◽  
Vol 199 ◽  
pp. 403-440 ◽  
Author(s):  
E. Laurien ◽  
L. Kleiser

The laminar-turbulent transition process in a parallel boundary-layer with Blasius profile is simulated by numerical integration of the three-dimensional incompressible Navier-Stokes equations using a spectral method. The model of spatially periodic disturbances developing in time is used. Both the classical Klebanoff-type and the subharmonic type of transition are simulated. Maps of the three-dimensional velocity and vorticity fields and visualizations by integrated fluid markers are obtained. The numerical results are compared with experimental measurements and flow visualizations by other authors. Good qualitative and quantitative agreement is found at corresponding stages of development up to the one-spike stage. After the appearance of two-dimensional Tollmien-Schlichting waves of sufficiently large amplitude an increasing three-dimensionality is observed. In particular, a peak-valley structure of the velocity fluctuations, mean longitudinal vortices and sharp spike-like instantaneous velocity signals are formed. The flow field is dominated by a three-dimensional horseshoe vortex system connected with free high-shear layers. Visualizations by time-lines show the formation of A-structures. Our numerical results connect various observations obtained with different experimental techniques. The initial three-dimensional steps of the transition process are consistent with the linear theory of secondary instability. In the later stages nonlinear interactions of the disturbance modes and the production of higher harmonics are essential.We also study the control of transition by local two-dimensional suction and blowing at the wall. It is shown that transition can be delayed or accelerated by superposing disturbances which are out of phase or in phase with oncoming Tollmien-Schlichting instability waves, respectively. Control is only effective if applied at an early, two-dimensional stage of transition. Mean longitudinal vortices remain even after successful control of the fluctuations.


1999 ◽  
Vol 396 ◽  
pp. 37-71 ◽  
Author(s):  
LEONID BREVDO ◽  
PATRICE LAURE ◽  
FREDERIC DIAS ◽  
THOMAS J. BRIDGES

The film flow down an inclined plane has several features that make it an interesting prototype for studying transition in a shear flow: the basic parallel state is an exact explicit solution of the Navier–Stokes equations; the experimentally observed transition of this flow shows many properties in common with boundary-layer transition; and it has a free surface, leading to more than one class of modes. In this paper, unstable wavepackets – associated with the full Navier–Stokes equations with viscous free-surface boundary conditions – are analysed by using the formalism of absolute and convective instabilities based on the exact Briggs collision criterion for multiple k-roots of D(k, ω) = 0; where k is a wavenumber, ω is a frequency and D(k, ω) is the dispersion relation function.The main results of this paper are threefold. First, we work with the full Navier–Stokes equations with viscous free-surface boundary conditions, rather than a model partial differential equation, and, guided by experiments, explore a large region of the parameter space to see if absolute instability – as predicted by some model equations – is possible. Secondly, our numerical results find only convective instability, in complete agreement with experiments. Thirdly, we find a curious saddle-point bifurcation which affects dramatically the interpretation of the convective instability. This is the first finding of this type of bifurcation in a fluids problem and it may have implications for the analysis of wavepackets in other flows, in particular for three-dimensional instabilities. The numerical results of the wavepacket analysis compare well with the available experimental data, confirming the importance of convective instability for this problem.The numerical results on the position of a dominant saddle point obtained by using the exact collision criterion are also compared to the results based on a steepest-descent method coupled with a continuation procedure for tracking convective instability that until now was considered as reliable. While for two-dimensional instabilities a numerical implementation of the collision criterion is readily available, the only existing numerical procedure for studying three-dimensional wavepackets is based on the tracking technique. For the present flow, the comparison shows a failure of the tracking treatment to recover a subinterval of the interval of unstable ray velocities V whose length constitutes 29% of the length of the entire unstable interval of V. The failure occurs due to a bifurcation of the saddle point, where V is a bifurcation parameter. We argue that this bifurcation of unstable ray velocities should be observable in experiments because of the abrupt increase by a factor of about 5.3 of the wavelength across the wavepacket associated with the appearance of the bifurcating branch. Further implications for experiments including the effect on spatial amplification rate are also discussed.


Sign in / Sign up

Export Citation Format

Share Document